Semantic similarity metrics for learned image registration

被引:0
|
作者
Czolbe, Steffen [1 ]
Krause, Oswin [1 ]
Feragen, Aasa [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[2] Tech Univ Denmark, DTU Compute, Lyngby, Denmark
关键词
Image Registration; Deep Learning; Representation Learning; FRAMEWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a semantic similarity metric for image registration. Existing metrics like Euclidean Distance or Normalized Cross-Correlation focus on aligning intensity values, giving difficulties with low intensity contrast or noise. Our approach learns dataset-specific features that drive the optimization of a learning-based registration model. We train both an unsupervised approach using an auto-encoder, and a semi-supervised approach using supplemental segmentation data to extract semantic features for image registration. Comparing to existing methods across multiple image modalities and applications, we achieve consistently high registration accuracy. A learned invariance to noise gives smoother transformations on low-quality images. Code and experiments are available at github.com/SteffenCzolbe/DeepSimRegistration.
引用
下载
收藏
页码:105 / 118
页数:14
相关论文
共 50 条
  • [41] Robust voxel similarity metrics for the registration of dissimilar single and multimodal images
    Nikou, C
    Heitz, F
    Armspach, JP
    PATTERN RECOGNITION, 1999, 32 (08) : 1351 - 1368
  • [42] Comparison of similarity metrics for texture image retrieval.
    Kokare, M
    Chatterji, BN
    Biswas, PK
    IEEE TENCON 2003: CONFERENCE ON CONVERGENT TECHNOLOGIES FOR THE ASIA-PACIFIC REGION, VOLS 1-4, 2003, : 571 - 575
  • [43] Comparison of Similarity Measurement Metrics on Medical Image Data
    Samantaray, Aswini. K.
    Rahulkar, Amol D.
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [44] Structural Texture Similarity Metrics for Image Analysis and Retrieval
    Zujovic, Jana
    Pappas, Thrasyvoulos N.
    Neuhoff, David L.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (07) : 2545 - 2558
  • [45] SIMILARITY METRICS APPLIED TO IMAGE ANALYSIS OF. PHOTOELASTICITY
    Brinez de Leon, Juan C.
    Restrepo Martinez, Alejandro
    Lopez Giraldo, Francisco E.
    DYNA-COLOMBIA, 2013, 80 (179): : 42 - 50
  • [46] Learning feature relevance and similarity metrics in image databases
    Bhanu, B
    Peng, J
    Qing, S
    IEEE WORKSHOP ON CONTENT-BASED ACCESS OF IMAGE AND VIDEO LIBRARIES - PROCEEDINGS, 1998, : 14 - 18
  • [47] New image similarity measure for bronchoscope tracking based on image registration
    Deguchi, D
    Mori, K
    Suenaga, Y
    Hasegawa, J
    Toriwaki, J
    Takabatake, H
    Natori, H
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003, PT 1, 2003, 2878 : 399 - 406
  • [48] IMAGE REGISTRATION BASED ON DYNAMIC DIRECTED GRAPHS WITH GROUPWISE IMAGE SIMILARITY
    Tang, Zhenyu
    Jiang, Di
    Fan, Yong
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 492 - 495
  • [49] Selective image similarity measure for bronchoscope tracking based on image registration
    Deguchi, Daisuke
    Mori, Kensaku
    Feuerstein, Marco
    Kitasaka, Takayuki
    Maurer, Calvin R., Jr.
    Suenaga, Yasuhito
    Takabatake, Hirotsugu
    Mori, Masaki
    Natori, Hiroshi
    MEDICAL IMAGE ANALYSIS, 2009, 13 (04) : 621 - 633
  • [50] Longitudinal Image Registration With Temporally-Dependent Image Similarity Measure
    Csapo, Istvan
    Davis, Brad
    Shi, Yundi
    Sanchez, Mar
    Styner, Martin
    Niethammer, Marc
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (10) : 1939 - 1951