Semantic similarity metrics for learned image registration

被引:0
|
作者
Czolbe, Steffen [1 ]
Krause, Oswin [1 ]
Feragen, Aasa [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[2] Tech Univ Denmark, DTU Compute, Lyngby, Denmark
关键词
Image Registration; Deep Learning; Representation Learning; FRAMEWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a semantic similarity metric for image registration. Existing metrics like Euclidean Distance or Normalized Cross-Correlation focus on aligning intensity values, giving difficulties with low intensity contrast or noise. Our approach learns dataset-specific features that drive the optimization of a learning-based registration model. We train both an unsupervised approach using an auto-encoder, and a semi-supervised approach using supplemental segmentation data to extract semantic features for image registration. Comparing to existing methods across multiple image modalities and applications, we achieve consistently high registration accuracy. A learned invariance to noise gives smoother transformations on low-quality images. Code and experiments are available at github.com/SteffenCzolbe/DeepSimRegistration.
引用
下载
收藏
页码:105 / 118
页数:14
相关论文
共 50 条
  • [1] Semantic similarity metrics for image registration
    Czolbe, Steffen
    Pegios, Paraskevas
    Krause, Oswin
    Feragen, Aasa
    MEDICAL IMAGE ANALYSIS, 2023, 87
  • [2] Image Similarity Metrics in Image Registration
    Melbourne, A.
    Ridgway, G.
    Hawkes, D. J.
    MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [3] Applicability and performance of some similarity metrics for automated image registration
    Suri, Sahil
    Arora, Manoj K.
    Seiler, Ralf
    Csaplovics, Elmar
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES, AND APPLICATIONS, 2006, 6405
  • [4] Generalized mutual information similarity metrics for multimodal biomedical image registration
    Wachowiak, MP
    Smolíková, R
    Tourassi, GD
    Elmaghraby, AS
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 1005 - 1006
  • [5] Fast Similarity Search for Learned Metrics
    Kulis, Brian
    Jain, Prateek
    Grauman, Kristen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (12) : 2143 - 2157
  • [6] Active learning for image retrieval via visual similarity metrics and semantic features
    Casado-Coscolla, Alvaro
    Sanchez-Belenguer, Carlos
    Wolfart, Erik
    Angorrilla-Bustamante, Carlos
    Sequeira, Vitor
    Engineering Applications of Artificial Intelligence, 2024, 138
  • [7] Similarity Metrics and Efficient Optimization for Simultaneous Registration
    Wachinger, Christian
    Navab, Nassir
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 667 - 674
  • [8] Efficient convolution-based pairwise elastic image registration on three multimodal similarity metrics
    Menchon-Lara, Rosa-Maria
    Simmross-Wattenberg, Federico
    Rodriguez-Cayetano, Manuel
    Casaseca-de-la-Higuera, Pablo
    Martin-Fernandez, Miguel A.
    Alberola-Lopez, Carlos
    SIGNAL PROCESSING, 2023, 202
  • [9] A novel image similarity measure for image registration
    Kalinic, Hrvoje
    Loncaric, Sven
    Bijnens, Bart
    PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2011), 2011, : 195 - 199
  • [10] Fast image search for learned metrics
    Jain, Prateek
    Kulis, Brian
    Grauman, Kristen
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 3879 - 3886