BSSNet: A Real-Time Semantic Segmentation Network for Road Scenes Inspired From AutoEncoder

被引:2
|
作者
Shi, Xiaoqiang [1 ,2 ,3 ]
Yin, Zhenyu [2 ,3 ]
Han, Guangjie [4 ]
Liu, Wenzhuo [5 ]
Qin, Li [1 ,2 ,3 ]
Bi, Yuanguo [6 ]
Li, Shurui [7 ]
机构
[1] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Comp Technol, Shenyang 110168, Peoples R China
[3] Liaoning Key Lab Domest Ind Control Platform Techn, Shenyang 110168, Peoples R China
[4] Hohai Univ, Dept Internet Things Engn, Changzhou 213022, Peoples R China
[5] China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
[6] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110167, Peoples R China
[7] Shenyang Aerosp Univ, Sch Comp Sci, Shenyang 110136, Peoples R China
关键词
Real-time semantic segmentation; convolution neural networks; AutoEncoder; feature fusion; FUSION NETWORK;
D O I
10.1109/TCSVT.2023.3325360
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although semantic segmentation methods have made remarkable progress so far, their long inference process limits their use in practical applications. Recently, some two-branch and three-branch real-time segmentation networks have been proposed to improve segmentation accuracy by adding branches to extract spatial or border information. For the design of extracting spatial information branches, preserving high-resolution features or adding segmentation loss to guide spatial branches are commonly used methods to extract spatial information. However, these approaches are not the most efficient. To solve the problem, we design the spatial information extraction branch as an AutoEncoder structure, which allows us to extract the spatial structure and features of the image during the encoding and decoding process of the AutoEncoder. Border, semantic and spatial information are all helpful for segmentation tasks, and efficiently fusing these three kinds of information can obtain better feature representation compared to the fusion of two types of information in the dual-branch network. However, existing three-branch networks have yet to explore this aspect deeply. Therefore, this paper designs a new three-branch network based on this starting point. In addition, we also propose a feature fusion module called the Unified Multi-Feature Fusion module (UMF), which can fuse multiple features efficiently. Our method achieves a state-of-the-art trade-off between inference speed and accuracy on the Cityscapes, CamVid, and NightCity datasets. Specifically, BSSNet-T achieves 78.8% mIoU at 115.8 FPS on the Cityscapes dataset, 79.5% mIoU at 170.8 FPS on the CamVid dataset, and 52.6% mIoU at 172.3 FPS on the NightCity dataset. Code is available at https://github.com/SXQ-STUDY/BSSNet.
引用
下载
收藏
页码:3424 / 3438
页数:15
相关论文
共 50 条
  • [21] Block attention network: A lightweight deep network for real-time semantic segmentation of road scenes in resource-constrained devices
    Mazhar, Saquib
    Atif, Nadeem
    Bhuyan, M. K.
    Ahamed, Shaik Rafi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [23] Deep Multi-Resolution Network for Real-Time Semantic Segmentation in Street Scenes
    Wang, Yalun
    Chen, Shidong
    Bian, Huicong
    Li, Weixiao
    Lu, Qin
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [24] Gated feature aggregate and alignment network for real-time semantic segmentation of street scenes
    Liu, Qian
    Li, Zhensheng
    Qi, Youwei
    Wang, Cunbao
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [25] A Real-Time Semantic Segmentation Approach for Autonomous Driving Scenes
    Qin, Feiwei
    Shen, Xiyue
    Peng, Yong
    Shao, Yanli
    Yuan, Wenqiang
    Ji, Zhongping
    Bai, Jing
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (07): : 1026 - 1037
  • [26] MSF2Net: multi-stage feature fusion network for real-time semantic segmentation in road scenes
    Zhang, Wenrui
    Peng, Zongju
    Huang, Lian
    Chen, Fen
    Tan, Honglin
    Journal of Electronic Imaging, 2024, 33 (05)
  • [27] Stage-Aware Feature Alignment Network for Real-Time Semantic Segmentation of Street Scenes
    Weng, Xi
    Yan, Yan
    Chen, Si
    Xue, Jing-Hao
    Wang, Hanzi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4444 - 4459
  • [28] Hierarchical Semantic Broadcasting Network for Real-Time Semantic Segmentation
    Li, Genling
    Li, Liang
    Zhang, Jiawan
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 309 - 313
  • [29] Deep Multi-Branch Aggregation Network for Real-Time Semantic Segmentation in Street Scenes
    Weng, Xi
    Yan, Yan
    Dong, Genshun
    Shu, Chang
    Wang, Biao
    Wang, Hanzi
    Zhang, Ji
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17224 - 17240
  • [30] BiSeNet: Bilateral Segmentation Network for Real-Time Semantic Segmentation
    Yu, Changqian
    Wang, Jingbo
    Peng, Chao
    Gao, Changxin
    Yu, Gang
    Sang, Nong
    COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 : 334 - 349