VIOLET: <underline>V</underline>isual Analyt<underline>i</underline>cs f<underline>o</underline>r Exp<underline>l</underline>ainable Quantum N<underline>e</underline>ural Ne<underline>t</underline>works

被引:0
|
作者
Ruan, Shaolun [1 ]
Liang, Zhiding [2 ]
Guan, Qiang [3 ]
Griffin, Paul [1 ]
Wen, Xiaolin [1 ]
Lin, Yanna [4 ]
Wang, Yong [1 ]
机构
[1] Singapore Management Univ, Singapore 188065, Singapore
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
[3] Kent State Univ, Kent, OH 44240 USA
[4] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
关键词
Data visualization; explainable artificial intelligence (XAI); quantum machine learning; qunatum neural networks; VISUAL ANALYTICS; DESIGN; VISUALIZATION; INFORMATION;
D O I
10.1109/TVCG.2024.3388557
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the rapid development of Quantum Machine Learning, quantum neural networks (QNN) have experienced great advancement in the past few years, harnessing the advantages of quantum computing to significantly speed up classical machine learning tasks. Despite their increasing popularity, the quantum neural network is quite counter-intuitive and difficult to understand, due to their unique quantum-specific layers (e.g., data encoding and measurement) in their architecture. It prevents QNN users and researchers from effectively understanding its inner workings and exploring the model training status. To fill the research gap, we propose VIOLET, a novel visual analytics approach to improve the explainability of quantum neural networks. Guided by the design requirements distilled from the interviews with domain experts and the literature survey, we developed three visualization views: the Encoder View unveils the process of converting classical input data into quantum states, the Ansatz View reveals the temporal evolution of quantum states in the training process, and the Feature View displays the features a QNN has learned after the training process. Two novel visual designs, i.e., satellite chart and augmented heatmap, are proposed to visually explain the variational parameters and quantum circuit measurements respectively. We evaluate VIOLET through two case studies and in-depth interviews with 12 domain experts. The results demonstrate the effectiveness and usability of VIOLET in helping QNN users and developers intuitively understand and explore quantum neural networks.
引用
收藏
页码:2862 / 2874
页数:13
相关论文
共 50 条
  • [21] Low dose <underline>T</underline>am<underline>O</underline>xifen and <underline>L</underline>ifestyl<underline>E</underline> changes for b<underline>R</underline>east c<underline>AN</underline>cer prevention (TOLERANT study): Study protocol of a randomized phase II biomarker trial in women at increased risk for breast cancer
    Guerrieri-Gonzaga, Aliana
    Serrano, Davide
    Gnagnarella, Patrizia
    Johansson, Harriet
    Zovato, Stefania
    Nardi, Mariateresa
    Pensabene, Matilde
    Buccolo, Simona
    DeCensi, Andrea
    Briata, Irene Maria
    Pistelli, Luigi
    Sansone, Clementina
    Mannucci, Sara
    Aristarco, Valentina
    Macis, Debora
    Lazzeroni, Matteo
    Aurilio, Gaetano
    Accornero, Chiara Arianna
    Gandini, Sara
    Bonanni, Bernardo
    PLOS ONE, 2024, 19 (09):
  • [22] iHerd: an <underline>i</underline>ntegrative <underline>h</underline>i<underline>e</underline>rarchical graph <underline>r</underline>epresentation learning framework to quantify network changes and prioritize risk genes in <underline>d</underline>isease
    Duan, Ziheng
    Dai, Yi
    Hwang, Ahyeon
    Lee, Cheyu
    Xie, Kaichi
    Xiao, Chutong
    Xu, Min
    Girgenti, Matthew J.
    Zhang, Jing
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (09)
  • [23] <underline>G</underline>lobal <underline>R</underline>egistry of <underline>A</underline>dverse <underline>C</underline>linical <underline>E</underline>vents (GRACE©): A Prospective, Multicenter, Observational Cohort Evaluating Complications Associated with Aesthetic Injectables
    Enright, Kaitlyn M.
    Nikolis, Andreas
    Sampalis, John
    JOURNAL OF CUTANEOUS MEDICINE AND SURGERY, 2025,
  • [24] <underline>Su</underline>stained inflation and chest comp<underline>r</underline>ession <underline>v</underline>ersus 3:<underline>1</underline> chest compression to <underline>v</underline>entilation ratio during cardiopulmonary resuscitation of asphyxiated n<underline>e</underline>wborns (SURV1VE): A cluster randomised controlled trial
    Schmolzer, Georg M.
    Pichler, Gerhard
    Solevag, Anne Lee
    Law, Brenda Hiu Yan
    Mitra, Souvik
    Wagner, Michael
    Pfurtscheller, Daniel
    Yaskina, Maryna
    Cheung, Po-Yin
    ARCHIVES OF DISEASE IN CHILDHOOD-FETAL AND NEONATAL EDITION, 2024, 109 (04): : 428 - 435
  • [25] Feasibility and accuracy of Dire<underline>C</underline>t <underline>L</underline>ung <underline>U</underline>ltrasound <underline>E</underline>valuation technique to monitor extravascular lung water in porcine lungs
    Buttar, Sana N.
    Moller-Sorensen, Hasse
    Perch, Michael
    Petersen, Rene H.
    Moller, Christian H.
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2025, 67 (01)
  • [26] The Myth of MARD (<underline>M</underline>ean <underline>A</underline>bsolute <underline>R</underline>elative <underline>D</underline>ifference): Limitations of MARD in the Clinical Assessment of Continuous Glucose Monitoring Data
    Vigersky, Robert A.
    Shin, John
    DIABETES TECHNOLOGY & THERAPEUTICS, 2024, 26 : 38 - 44
  • [27] FLASH-and-Prune: <underline>F</underline>ederated <underline>L</underline>earning for <underline>A</underline>utomated <underline>S</underline>election of <underline>H</underline>igh-Band mmWave Sectors using Model Pruning
    Salehi, Batool
    Roy, Debashri
    Gu, Jerry
    Dick, Chris
    Chowdhury, Kaushik
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 11655 - 11669
  • [28] UA-MPC: <underline>U</underline>ncertainty-<underline>A</underline>ware <underline>M</underline>odel <underline>P</underline>redictive <underline>C</underline>ontrol for Motorized LiDAR Odometry
    Li, Jianping
    Xu, Xinhang
    Liu, Jinxin
    Cao, Kun
    Yuan, Shenghai
    Xie, Lihua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (04): : 3652 - 3659
  • [29] <underline>P</underline>r<underline>E</underline>vention of posttraumatic contractu<underline>R</underline>es with <underline>K</underline>etotifen 2 (PERK 2) - protocol for a multicenter randomized clinical trial
    Ademola, Ayoola
    Hildebrand, Kevin A.
    Schneider, Prism S.
    Mohtadi, Nicholas G. H.
    White, Neil J.
    Bosse, Michael J.
    Garven, Alexandra
    Walker, Richard E. A.
    Sajobi, Tolulope T.
    BMC MUSCULOSKELETAL DISORDERS, 2020, 21 (01)
  • [30] <underline>My</underline>ocardial Minimal <underline>Da</underline>mage Af<underline>t</underline>er Rapid V<underline>e</underline>ntricular Pacing - the prospective randomized multicentre MyDate-Trial
    Semmler, Verena
    Deutschmann, Clara
    Haller, Bernhard
    Lennerz, Carsten
    Brkic, Amir
    Grebmer, Christian
    Blazek, Patrick
    Weigand, Severin
    Karch, Martin
    Busch, Sonia
    Kolb, Christof
    SCIENTIFIC REPORTS, 2020, 10 (01)