The influence of zirconium dioxide nanoadditives on the properties of mullite-corundum

被引:0
|
作者
Nerubatskyi, V. P. [1 ]
Hevorkian, E. S. [1 ]
Vovk, R. V. [3 ]
Krzysiak, Z. [2 ]
Komarova, H. L. [1 ]
机构
[1] Ukrainian State Univ Railway Transport, UA-61050 Kharkiv, Ukraine
[2] Univ Life Sci Lublin, PL-20950 Lublin, Poland
[3] V N Karazin Kharkiv Natl Univ, UA-61022 Kharkiv, Ukraine
关键词
zirconium dioxide; electroconsolidation; cryogenic material; microstructure; mullite; nanopowder; nanostructure; aluminum oxide; NANOCRYSTALLINE MATERIALS; MECHANICAL-PROPERTIES; PHASE-DIAGRAM; GRAIN-GROWTH; CREEP; CERAMICS; AL2O3; DENSIFICATION; TEMPERATURE; PERFORMANCE;
D O I
10.1063/10.0026282
中图分类号
O59 [应用物理学];
学科分类号
摘要
The paper analyzes the effect of nanoadditives of zirconium dioxide, partially stabilized by Y2O3, on the Al2O3-SiO2 matrix during hot pressing by the electroconsolidation method. The microstructure obtained at different compositions and sintering modes is studied. It was established that the introduction of nanopowder ZrO2-3 mol % Y2O3 increases the crack resistance of sintered samples not only due to the transformation of the tetragonal phase to the monoclinic phase, but also due to the formation of a solid solution with aluminum oxide at the interphase boundaries. Starting from a temperature of 1400 degrees C, complete densification occurs with the formation of nonporous composites while preserving the nanostructure. At this temperature, the formation of mullite with cristobalite phases also begins. The high value of thermocycles makes it possible to use this composite material as a cryogenic one. The fabrication of mullite-corundum composites with additions of ZrO2-3 mol % Y2O3 nanopowders via the method of electrosolidification has enabled the attainment of high fracture toughness, K-1C = 14.5 MPa & sdot;m(1/2), and hardness HV10 = 14 GPa. These results evidence excellent mechanical properties, thereby expanding the potential applications of this material.
引用
收藏
页码:558 / 568
页数:11
相关论文
共 50 条
  • [31] Use of Cermet Binder to Obtain Mullite-Corundum Material
    Klyuchnikova, N. V.
    Lumar', E. A.
    GLASS AND CERAMICS, 2015, 72 (1-2) : 17 - 19
  • [32] High purity mullite-corundum thermal insulating firebricks
    Ni, W
    Liu, FM
    JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 1999, 6 (04): : 237 - 241
  • [33] High purity mullite-corundum thermal insulating firebricks
    Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
    J Univ Sci Technol Beijing Eng Ed, 4 (237-241):
  • [34] Service of mullite-corundum stoppers on the base of Chinese bauxites
    Karas', G.E.
    Soshnikova, I.V.
    Ogneupory i Tekhnicheskaya Keramika, 1993, (11): : 28 - 29
  • [35] MECHANISM OF WEAR OF CORUNDUM AND MULLITE-CORUNDUM REFRACTORIES DURING STOPPERLESS TEEMING OF STEEL
    USATIKOV, IF
    MIKHAILOVA, KA
    ANTONOV, SA
    KALITA, GE
    ZHUKOVA, ZD
    SIZOVA, EK
    REFRACTORIES, 1980, 21 (3-4): : 153 - 157
  • [36] Use of Cermet Binder to Obtain Mullite-Corundum Material
    N. V. Klyuchnikova
    E. A. Lumar’
    Glass and Ceramics, 2015, 72 : 17 - 19
  • [37] The mullite-corundum crucibles for the salt melts of the hardening furnace
    Ustichenko, V.A.
    Korovyanskaya, A.A.
    Korchakov, V.G.
    Privalova, N.G.
    Bulat, V.A.
    Stepanova, V.P.
    Gonka, V.I.
    Metallurgicheskaya i Gornorudnaya Promyshlennost, 2000, (06): : 52 - 55
  • [38] Mullite-Corundum Composites from Bauxite: Effect of Chemical Composition
    Maldhure, Atul V.
    Tripathi, H. S.
    Ghosh, A.
    Das, S. K.
    TRANSACTIONS OF THE INDIAN CERAMIC SOCIETY, 2014, 73 (01) : 31 - 36
  • [39] MULLITE-CORUNDUM REFRACTORIES FOR CERAMIC BURNERS OF COWPER BLAST HEATERS
    PRIMACHENKO, VV
    USTICHENKO, VA
    SHAPOVALOV, VS
    VOLOSHCHENKO, TS
    KRUTKO, GI
    KARAS, GE
    ENTIN, VI
    PIVOVAROVA, LV
    REFRACTORIES, 1980, 21 (1-2): : 90 - 92
  • [40] Mullite-Corundum Materials Based on Mullite Binder Resistant to High-Temperature Deformation
    Pletnev, P. M.
    Pogrebenkov, V. M.
    Vereshchagin, V. I.
    Tyul'kin, D. S.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2018, 58 (06) : 618 - 625