The influence of zirconium dioxide nanoadditives on the properties of mullite-corundum

被引:0
|
作者
Nerubatskyi, V. P. [1 ]
Hevorkian, E. S. [1 ]
Vovk, R. V. [3 ]
Krzysiak, Z. [2 ]
Komarova, H. L. [1 ]
机构
[1] Ukrainian State Univ Railway Transport, UA-61050 Kharkiv, Ukraine
[2] Univ Life Sci Lublin, PL-20950 Lublin, Poland
[3] V N Karazin Kharkiv Natl Univ, UA-61022 Kharkiv, Ukraine
关键词
zirconium dioxide; electroconsolidation; cryogenic material; microstructure; mullite; nanopowder; nanostructure; aluminum oxide; NANOCRYSTALLINE MATERIALS; MECHANICAL-PROPERTIES; PHASE-DIAGRAM; GRAIN-GROWTH; CREEP; CERAMICS; AL2O3; DENSIFICATION; TEMPERATURE; PERFORMANCE;
D O I
10.1063/10.0026282
中图分类号
O59 [应用物理学];
学科分类号
摘要
The paper analyzes the effect of nanoadditives of zirconium dioxide, partially stabilized by Y2O3, on the Al2O3-SiO2 matrix during hot pressing by the electroconsolidation method. The microstructure obtained at different compositions and sintering modes is studied. It was established that the introduction of nanopowder ZrO2-3 mol % Y2O3 increases the crack resistance of sintered samples not only due to the transformation of the tetragonal phase to the monoclinic phase, but also due to the formation of a solid solution with aluminum oxide at the interphase boundaries. Starting from a temperature of 1400 degrees C, complete densification occurs with the formation of nonporous composites while preserving the nanostructure. At this temperature, the formation of mullite with cristobalite phases also begins. The high value of thermocycles makes it possible to use this composite material as a cryogenic one. The fabrication of mullite-corundum composites with additions of ZrO2-3 mol % Y2O3 nanopowders via the method of electrosolidification has enabled the attainment of high fracture toughness, K-1C = 14.5 MPa & sdot;m(1/2), and hardness HV10 = 14 GPa. These results evidence excellent mechanical properties, thereby expanding the potential applications of this material.
引用
收藏
页码:558 / 568
页数:11
相关论文
共 50 条
  • [1] The influence of zirconium dioxide nanoadditives on the properties of mullite-corundum
    Nerubatskyi, V.P.
    Hevorkian, E.S.
    Vovk, R.V.
    Krzysiak, Z.
    Komarova, H.L.
    Fizika Nizkikh Temperatur, 2024, 50 (07): : 621 - 632
  • [2] Development of a Mullite-Corundum Mortar for Cementing Mullite-Corundum Components
    L. A. Babkina
    V. I. Drozd
    I. V. Khonchik
    V. L. Zinchenko
    L. N. Nikulina
    N. A. Stepanyuk
    Refractories and Industrial Ceramics, 2001, 42 : 372 - 373
  • [3] Development of a mullite-corundum mortar for cementing mullite-corundum components
    Babkina, LA
    Drozd, VI
    Khonchik, IV
    Zinchenko, VL
    Nikulina, LN
    Stepanyuk, NA
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2001, 42 (9-10) : 372 - 373
  • [4] MULLITE-CORUNDUM FILLED CHECKERWORK
    IGNATOVA, TS
    UZBERG, LV
    KOKSHAROV, VD
    SHKLYAR, FR
    AGAFONOVA, MI
    REFRACTORIES, 1981, 22 (1-2): : 23 - 27
  • [5] FINE MILLING OF FUSED MULLITE AND MULLITE-CORUNDUM
    USTICHENKO, VA
    SHAPOVALOV, VS
    REFRACTORIES, 1981, 22 (5-6): : 319 - 320
  • [6] Effect of Microsilica Addition on the Properties of Mullite-Corundum Ceramic
    CHENG Benjun
    China's Refractories, 2006, (02) : 15 - 21
  • [7] Modeling and Optimization of Properties of Domestic Mullite-Corundum Composites
    Cherepanov, V. V.
    HIGH TEMPERATURE, 2021, 59 (2-6) : 198 - 206
  • [8] Influence of kaolin and firing temperature on the mullite formation in porous mullite-corundum materials
    Mahnicka, L.
    Svinka, R.
    Svinka, V.
    5TH BALTIC CONFERENCE ON SILICATE MATERIALS, 2011, 25
  • [9] STRUCTURE AND CREEP OF MULLITE-CORUNDUM REFRACTORIES
    VISHNEVSKII, II
    KUSHCHENKO, AV
    SMIRNOVA, LD
    SHAPOVALOV, VS
    REFRACTORIES, 1985, 26 (11-12): : 592 - 598
  • [10] INFLUENCE OF PHASE-TRANSITIONS ON THE CREEP OF MULLITE-CORUNDUM REFRACTORIES
    VISHNEVSKII, II
    SMIRNOVA, LD
    KUSHCHENKO, AV
    SHAPOVALOV, VS
    INORGANIC MATERIALS, 1986, 22 (11) : 1652 - 1656