Significant carbonate burial in The Bahamas seagrass ecosystem

被引:0
|
作者
Fu, Chuancheng [1 ]
Frappi, Sofia [1 ]
Havlik, Michelle Nicole [1 ]
Howe, Wells [2 ]
Harris, S. David [2 ]
Laiolo, Elisa [1 ]
Gallagher, Austin J. [2 ]
Masque, Pere [3 ,4 ]
Duarte, Carlos M. [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Marine Sci Program, Biol & Environm Sci & Engn Div BESE, Thuwal 239556900, Saudi Arabia
[2] Bebeath Waves, Herndon, VA 20172 USA
[3] Int Atom Energy Agcy IAEA, Marine Environm Labs, Quai Antoine 1er, MC-98000 Monaco, Monaco
[4] Edith Cowan Univ, Ctr Marine Ecosyst Res, Sch Nat Sci, Joondalup, WA 6027, Australia
来源
ENVIRONMENTAL RESEARCH LETTERS | 2024年 / 19卷 / 09期
关键词
seagrass; sediment; carbonate; carbon budget; The Bahamas; BLUE CARBON; ACCUMULATION; SEDIMENTS; BANK;
D O I
10.1088/1748-9326/ad6a29
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Seagrass meadows store significant amounts of carbonate (CaCO3) in sediment, contributing to coastal protection but potentially offsetting their effectiveness as carbon sinks. Understanding the accumulation of CaCO3 and its balance with organic carbon (Corg) in seagrass ecosystems is crucial for developing seagrass-based blue carbon strategies for climate change mitigation. However, CaCO3 accumulation in seagrass meadows varies significantly across geographic regions, with notable data gaps in the Caribbean and Central America. Here, we sampled 10 seagrass meadows across an extensive island chain in The Bahamas, part of the largest seagrass ecosystem and one of the largest CaCO3 banks globally, to evaluate CaCO3 stock, accumulation rate, and its balance with Corg sequestration. Seagrass meadows in The Bahamas store 6405-8847 Tg of inorganic carbon (Cinorg) in the upper meter sediment, with an annual accumulation rate of 38.3-52.9 Tg of Cinorg, highlighting these meadows as hotspots for CaCO3 burial. CaCO3 contributes 67 +/- 8% (mean +/- standard error) of the sediment accumulation, indicating its important role in seabed elevation. Sediment Cinorg showed no significant relationship with Corg, with an average Corg : Cinorg ratio of 0.069 +/- 0.002, similar to 10 times lower than the threshold (Corg : Cinorg ratio of about 0.63) at which seagrass ecosystem transition from CO2 sources to sinks. However, the available air-sea gas flux measurement was only 1/5 of the calculated CO2 emission expected from calcification, suggesting that part of the accumulated CaCO3 is supported by allochthonous inputs. Furthermore, no perceivable relationship between seagrass density and either CaCO3 stock or accumulation rate was observed, indicating that seagrass may play a limited role in supporting CaCO3 production. Further studies on water chemistry, calcification rate, air-sea CO2 flux, and comparison between seagrass and unvegetated habitats are required to elucidate the carbon budget of this globally significant ecosystem.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Seagrass ecosystems as a globally significant carbon stock
    Fourqurean, James W.
    Duarte, Carlos M.
    Kennedy, Hilary
    Marba, Nuria
    Holmer, Marianne
    Angel Mateo, Miguel
    Apostolaki, Eugenia T.
    Kendrick, Gary A.
    Krause-Jensen, Dorte
    McGlathery, Karen J.
    Serrano, Oscar
    NATURE GEOSCIENCE, 2012, 5 (07) : 505 - 509
  • [42] Seagrass ecosystems as a globally significant carbon stock
    James W. Fourqurean
    Carlos M. Duarte
    Hilary Kennedy
    Núria Marbà
    Marianne Holmer
    Miguel Angel Mateo
    Eugenia T. Apostolaki
    Gary A. Kendrick
    Dorte Krause-Jensen
    Karen J. McGlathery
    Oscar Serrano
    Nature Geoscience, 2012, 5 : 505 - 509
  • [43] Testing for thresholds of ecosystem collapse in seagrass meadows
    Connell, Sean D.
    Fernandes, Milena
    Burnell, Owen W.
    Doubleday, Zoe A.
    Griffin, Kingsley J.
    Irving, Andrew D.
    Leung, Jonathan Y. S.
    Owen, Samuel
    Russell, Bayden D.
    Falkenberg, Laura J.
    CONSERVATION BIOLOGY, 2017, 31 (05) : 1196 - 1201
  • [44] THE EFFECTS OF TRIBUTYLTIN WITHIN A THALASSIA SEAGRASS ECOSYSTEM
    KELLY, JR
    LEVINE, SN
    BUTTEL, LA
    CARR, KA
    RUDNICK, DT
    MORTON, RD
    ESTUARIES, 1990, 13 (03): : 301 - 310
  • [45] Implications of nutrient decline in the seagrass ecosystem success
    Cardoso, P. G.
    Leston, S.
    Grilo, T. F.
    Bordalo, M. D.
    Crespo, D.
    Raffaelli, D.
    Pardal, M. A.
    MARINE POLLUTION BULLETIN, 2010, 60 (04) : 601 - 608
  • [46] Seagrass ecosystem services - What's next?
    Nordlund, Lina Mtwana
    Jackson, Emma L.
    Nakaoka, Masahiro
    Samper-Villarreal, Jimena
    Beca-Carretero, Pedro
    Creed, Joel C.
    MARINE POLLUTION BULLETIN, 2018, 134 : 145 - 151
  • [47] Seagrass meadows as proxy for assessment of ecosystem health
    Purvaja, R.
    Robin, R. S.
    Ganguly, D.
    Hariharan, G.
    Singh, G.
    Raghuraman, R.
    Ramesh, R.
    OCEAN & COASTAL MANAGEMENT, 2018, 159 : 34 - 45
  • [48] Using seagrass coverage as an indicator of ecosystem condition
    Corbett, CA
    Doering, PH
    Madley, KA
    Ott, JA
    Tomasko, DA
    ESTUARINE INDICATORS, 2005, : 229 - 245
  • [49] Seagrass Ecosystem and Climate Change: An Indian Perspective
    Singh, Gurmeet
    Ganguly, Dipnarayan
    Selvam, A. Paneer
    Banerjee, Kakolee
    Purvaja, R.
    Ramesh, R.
    JOURNAL OF CLIMATE CHANGE, 2015, 1 (1-2) : 67 - 74
  • [50] Ecosystem services returned through seagrass restoration
    Reynolds, Laura K.
    Waycott, Michelle
    McGlathery, Karen J.
    Orth, Robert J.
    RESTORATION ECOLOGY, 2016, 24 (05) : 583 - 588