Protocol for performing deep learning-based fundus fluorescein angiography image analysis with classification and segmentation tasks

被引:0
|
作者
Lin, Zhenzhe [1 ]
Zhao, Xinyu [1 ,2 ]
Yu, Shanshan [1 ]
Xie, Liqiong [1 ]
Xu, Yue [1 ]
Zhao, Lanqin [1 ]
Zhang, Guoming [2 ]
Zhang, Shaochong [2 ]
Lu, Yan [3 ]
Lin, Haotian [1 ,4 ,5 ,6 ,7 ]
Liang, Xiaoling [1 ]
Lin, Duoru [1 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Key Lab Ophthalmol & Visual Sci, Guangdong Prov Clin Res Ctr Ocular Dis, State Key Lab Ophthalmol,Zhongshan Ophthalm Ctr, Guangzhou 510060, Peoples R China
[2] Jinan Univ, Shenzhen Eye Hosp, Shenzhen Eye Inst, Shenzhen 518040, Peoples R China
[3] Foshan Second Peoples Hosp, Foshan 528001, Peoples R China
[4] Sun Yat Sen Univ, Hainan Eye Hosp, Haikou 570311, Peoples R China
[5] Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, Key Lab Ophthalmol, Haikou 570311, Peoples R China
[6] Sun Yat Sen Univ, Ctr Precis Med, Guangzhou 510080, Peoples R China
[7] Sun Yat Sen Univ, Zhongshan Sch Med, Dept Genet & Biomed Informat, Guangzhou 510080, Peoples R China
来源
STAR PROTOCOLS | 2024年 / 5卷 / 03期
基金
中国国家自然科学基金;
关键词
Protocol for multi;
D O I
10.1016/j.xpro.2024.103134
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fundus fluorescein angiography (FFA) examinations are widely used in the evaluation of fundus disease conditions to facilitate further treatment suggestions. Here, we present a protocol for performing deep learning -based FFA image analytics with classification and segmentation tasks. We describe steps for data preparation, model implementation, statistical analysis, and heatmap visualization. The protocol is applicable in Python using customized data and can achieve the whole process from diagnosis to treatment suggestion of ischemic retinal diseases. For complete details on the use and execution of this protocol, please refer to Zhao et al. 1
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image
    Chen, Yiwei
    He, Yi
    Ye, Hong
    Xing, Lina
    Zhang, Xin
    Shi, Guohua
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2024, 17 (03)
  • [2] Segmentation-based Deep Learning Fundus Image Analysis
    Wu, Qian
    Cheddad, Abbas
    2019 NINTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2019,
  • [3] Recommended protocol for performing oral fundus fluorescein angiography (FFA) in children
    Oliver R. Marmoy
    Robert H. Henderson
    Kuan Ooi
    Eye, 2022, 36 : 234 - 236
  • [4] Recommended protocol for performing oral fundus fluorescein angiography (FFA) in children
    Marmoy, Oliver R.
    Henderson, Robert H.
    Ooi, Kuan
    EYE, 2022, 36 (01) : 234 - 236
  • [5] Combined Deep Learning of Fundus Images and Fluorescein Angiography for Retinal Artery/Vein Classification
    Go, Sojung
    Kim, Jooyoung
    Noh, Kyoung Jin
    Park, Sang Jun
    Lee, Soochahn
    IEEE ACCESS, 2022, 10 : 70688 - 70698
  • [6] Deep learning-based fundus image analysis for cardiovascular disease: a review
    Chikumba, Symon
    Hu, Yuqian
    Luo, Jing
    THERAPEUTIC ADVANCES IN CHRONIC DISEASE, 2023, 14
  • [7] Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning
    Xiangji Pan
    Kai Jin
    Jing Cao
    Zhifang Liu
    Jian Wu
    Kun You
    Yifei Lu
    Yufeng Xu
    Zhaoan Su
    Jiekai Jiang
    Ke Yao
    Juan Ye
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258 : 779 - 785
  • [8] Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning
    Pan, Xiangji
    Jin, Kai
    Cao, Jing
    Liu, Zhifang
    Wu, Jian
    You, Kun
    Lu, Yifei
    Xu, Yufeng
    Su, Zhaoan
    Jiang, Jiekai
    Yao, Ke
    Ye, Juan
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2020, 258 (04) : 779 - 785
  • [9] Deep Learning-Based Brain Tumor Image Analysis for Segmentation
    Zahid Mansur
    Jyotismita Talukdar
    Thipendra P. Singh
    Chandan J. Kumar
    SN Computer Science, 6 (1)
  • [10] Quantitative image sequence analysis of fundus fluorescein angiography
    Berger, JW
    OPHTHALMIC SURGERY AND LASERS, 1999, 30 (01): : 72 - 73