Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells

被引:1
|
作者
Ahmed, Yameen [1 ,5 ]
Feng, Xiangxiang [1 ]
Gao, Yuanji [1 ]
Ding, Yang [1 ]
Long, Caoyu [1 ]
Haider, Mustafa [1 ]
Li, Hengyue [1 ]
Li, Zhuan [2 ]
Huang, Shicheng [3 ,4 ]
Saidaminov, Makhsud I. [5 ,6 ]
Yang, Junliang [1 ,2 ]
机构
[1] Cent South Univ, Sch Phys & Elect, Hunan Key Lab Super Microstruct & Ultrafast Proc, Changsha 410083, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[3] Guangxi Crystal Union Photoelect Mat Co Ltd, Liuzhou 545036, Guangxi Zhuang, Peoples R China
[4] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[5] Univ Victoria, Dept Elect & Comp Engn, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[6] Univ Victoria, Dept Chem, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
基金
中国国家自然科学基金;
关键词
FAPbI(3); Phase stability; SnO2; Perovskite solar cells; Ionic liquid; Interface engineering; ELECTRON-TRANSPORT LAYER; SNO2;
D O I
10.3866/PKU.WHXB202303057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Formamidinium lead iodide (FAPbI(3)) perovskite solar cells (PSCs) have attracted significant attention owing to their outstanding optoelectronic properties, but long-term device stability is still a crucial issue related to FAPbI(3) PSCs. FAPbI(3) undergoes phase transition from black perovskite phase to yellow non-perovskite phase at room temperature, and moisture triggers this phase transition. One of the most widely used methods to improve the stability of PSCs is interface engineering. Being green functional solvents, ionic liquids (ILs) have been regarded as potential alternatives to toxic interface modifiers, thereby increasing their commercial viability and accelerating their adoption in the renewable energy market. In this study, an IL, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM[BF4]) was used to modify the interface between the electron transport layer and perovskite layer due to its low volatility, low toxicity, high conductivity, and high thermal stability. The introduction of IL not only reduces interface defects but also improves perovskite film quality. Density functional theory (DFT) calculations show that there is a strong interface interaction between the IL and perovskite surface that is beneficial to decrease the density of defect states of the perovskite surface and stabilize the perovskite lattice. Apart from the defects in the perovskite film, solution processed SnO2 also suffers from surface imperfections. Defects on the SnO2 surface generate defect states, which cause band alignment issues and stability issues. DFT calculations show that the surface gap states with IL are smaller than those without IL. Such weakened surface gap states indicate reduced carrier recombination at the surface region, which improves the device performance. Consequently, we achieved a power conversion efficiency exceeding 22% for the IL-modified FAPbI(3) PSCs (control similar to 21%). After storing for over 1800 h in a dry box (relative humidity (RH) similar to 20%), the champion device retained similar to 90% of its initial efficiency, while the control devices degraded into non-perovskite yellow hexagonal phase (delta-FAPbI(3) ).
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Synergistically Regulating CBD-SnO2/Perovskite Buried Interface for Efficient FAPbI3 Perovskite Solar Cells
    Liu, Zhenghao
    Li, Yiming
    Chen, Zijing
    Tan, Chengyu
    Du, Xiangjin
    Tian, Fubo
    Shi, Jiangjian
    Wu, Huijue
    Luo, Yanhong
    Li, Dongmei
    Meng, Qingbo
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [22] Zwitterionic Ionic Liquid as Additive for High-Performance FAPbI3 Perovskite Solar Cells with Negligible Hysteresis
    Li, Xiangdong
    Zou, Yu
    Yu, Shangbo
    Zhao, Xin
    Yu, Wenjin
    Yang, Shuang
    Guo, Haoqing
    Xiao, Lixin
    Chen, Zhijian
    Qu, Bo
    SOLAR RRL, 2023, 7 (10)
  • [23] Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells
    Xue, Jingjing
    Lee, Jin-Wook
    Dai, Zhenghong
    Wang, Rui
    Nuryyeva, Selbi
    Liao, Michael E.
    Chang, Sheng-Yung
    Meng, Lei
    Meng, Dong
    Sun, Pengyu
    Lin, Oliver
    Goorsky, Mark S.
    Yang, Yang
    JOULE, 2018, 2 (09) : 1866 - 1878
  • [24] An ionic liquid as an interface modulator for highly efficient and stable perovskite solar cells
    Chen, Xiang
    Song, Lixin
    Gu, Ningxia
    Zhang, Pengyun
    Ning, Lei
    Du, Pingfan
    Chen, Fengfeng
    Xiong, Jie
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (08) : 1992 - 2002
  • [25] Phase-Pure α-FAPbI3 for Perovskite Solar Cells
    Niu, Tingting
    Chao, Lingfeng
    Dong, Xue
    Fu, Li
    Chen, Yonghua
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (07): : 1845 - 1854
  • [26] On the synergistic interplay between annealing temperature and time and additive concentration for efficient and stable FAPbI3 perovskite solar cells
    Pallotta, Riccardo
    Degani, Matteo
    Toniolo, Francesco
    Cavalli, Silvia
    Turci, Federico
    Bi, Wen Hua
    Girella, Alessandro
    Milanese, Chiara
    Schüler, Andreas
    Magrez, Arnaud
    Grancini, Giulia
    Materials Today Advances, 2024, 24
  • [27] Interfacial Modification by Low-Temperature Anchoring Surface Uncoordinated Pb for Efficient FAPbI3 Perovskite Solar Cells
    Tang, Jin
    Liu, Le
    Yu, Zhibin
    Du, Jiajia
    Cai, Xu
    Zhang, Mei
    Zhao, Min
    Bai, Ling
    Gai, Zhigang
    Cui, Shuang
    Li, Xiaofang
    Jiu, Tonggang
    ADVANCED SUSTAINABLE SYSTEMS, 2022, 6 (05):
  • [28] Dual-side interfacial passivation of FAPbI3 perovskite film by Naphthylmethylammonium iodide for highly efficient and stable perovskite solar cells
    Hatamvand, Mohammad
    Gholipour, Somayeh
    Chen, Muyang
    Zhou, Yan
    Jiang, Tingting
    Hu, Zhelu
    Chen, Yonghua
    Huang, Wei
    CHEMICAL ENGINEERING JOURNAL, 2023, 460
  • [29] Thermally controlled growth of photoactive FAPbI3 films for highly stable perovskite solar cells
    Sanchez, Sandy
    Cacovich, Stefania
    Vidon, Guillaume
    Guillemoles, Jean-Francois
    Eickemeyer, Felix
    Zakeeruddin, Shaik M.
    Schawe, Jurgen E. K.
    Loffler, Jorg F.
    Cayron, Cyril
    Schouwink, Pascal
    Graetzel, Michael
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (09) : 3862 - 3876
  • [30] Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells
    Lu, Haizhou
    Liu, Yuhang
    Ahlawat, Paramvir
    Mishra, Aditya
    Tress, Wolfgang R.
    Eickemeyer, Felix T.
    Yang, Yingguo
    Fu, Fan
    Wang, Zaiwei
    Avalos, Claudia E.
    Carlsen, Brian, I
    Agarwalla, Anand
    Zhang, Xin
    Li, Xiaoguo
    Zhan, Yiqiang
    Zakeeruddin, Shaik M.
    Emsley, Lyndon
    Rothlisberger, Ursula
    Zheng, Lirong
    Hagfeldt, Anders
    Gratzel, Michael
    SCIENCE, 2020, 370 (6512) : 74 - +