On the Expected Size of Conformal Prediction Sets

被引:0
|
作者
Dhillon, Guneet S. [1 ]
Deligiannidis, George [1 ]
Rainforth, Tom [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While conformal predictors reap the benefits of rigorous statistical guarantees on their error frequency, the size of their corresponding prediction sets is critical to their practical utility. Unfortunately, there is currently a lack of finite-sample analysis and guarantees for their prediction set sizes. To address this shortfall, we theoretically quantify the expected size of the prediction sets under the split conformal prediction framework. As this precise formulation cannot usually be calculated directly, we further derive point estimates and high-probability interval bounds that can be empirically computed, providing a practical method for characterizing the expected set size. We corroborate the efficacy of our results with experiments on real-world datasets for both regression and classification problems.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Quasiconformal geometry and removable sets for conformal mappings
    Toni Ikonen
    Matthew Romney
    Journal d'Analyse Mathématique, 2022, 148 : 119 - 185
  • [42] Exceptional sets for average conformal dynamical systems
    Qu, Congcong
    Wang, Juan
    CHAOS SOLITONS & FRACTALS, 2022, 161
  • [43] Conformal Equivalence of Analytic Functions on Compact Sets
    Richards, Trevor
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (04) : 585 - 608
  • [44] Gap sequences of self-conformal sets
    Juan Deng
    Qin Wang
    Lifeng Xi
    Archiv der Mathematik, 2015, 104 : 391 - 400
  • [45] Quasiconformal geometry and removable sets for conformal mappings
    Ikonen, Toni
    Romney, Matthew
    JOURNAL D ANALYSE MATHEMATIQUE, 2022, 148 (01): : 119 - 185
  • [46] On a global conformal invariant of initial data sets
    Beig, R
    Szabados, LB
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (11) : 3091 - 3107
  • [47] Rigidity of connected limit sets of conformal IFSs
    Mauldin, RD
    Mayer, V
    Urbanski, M
    MICHIGAN MATHEMATICAL JOURNAL, 2001, 49 (03) : 451 - 458
  • [48] Gap sequences of self-conformal sets
    Deng, Juan
    Wang, Qin
    Xi, Lifeng
    ARCHIV DER MATHEMATIK, 2015, 104 (04) : 391 - 400
  • [49] Conformal Dimension: Cantor Sets and Fuglede Modulus
    Hakobyan, Hrant
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (01) : 87 - 111
  • [50] Conformal Equivalence of Analytic Functions on Compact Sets
    Trevor Richards
    Computational Methods and Function Theory, 2016, 16 : 585 - 608