Lehmer-type bounds and counting rational points of bounded heights on Abelian varieties

被引:0
|
作者
Kumar, Narasimha [1 ]
Sahoo, Satyabrat [1 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Math, Sangareddy 502285, India
关键词
Abelian varieties; Neron-Tate heights; Lehmer-type bounds; Counting rational points; NERON-TATE HEIGHT; CANONICAL HEIGHT; NUMBER; VALUES;
D O I
10.1142/S1793042124501045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Lehmer-type bounds for the Neron-Tate height of (K) over tilde -points on abelian varieties A over number fields K. Then, we estimate the number of K-rational points on A with Neron-Tate height <= logB for B >> 0. This estimate involves a constant C, which is not explicit. However, for elliptic curves and the product of elliptic curves over K, we make the constant explicitly computable.
引用
收藏
页码:2125 / 2138
页数:14
相关论文
共 50 条