Scaling Relations on High-Entropy Alloy Catalyst Surfaces

被引:2
|
作者
Hutu, Ana-Iulia [1 ]
Pervolarakis, Emmanouil [1 ,2 ]
Remediakis, Ioannis N. [2 ]
Kristoffersen, Henrik H. [1 ]
Rossmeisl, Jan [1 ]
机构
[1] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark
[2] Univ Crete, Dept Mat Sci & Technol, Iraklion 70013, Greece
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 25期
基金
新加坡国家研究基金会;
关键词
OXYGEN REDUCTION REACTION; STEPPED PLATINUM SURFACES; CO OXIDATION; ELECTROCATALYSIS; UNIVERSALITY; REACTIVITY; VOLCANO; WATER; ADSORPTION; METALS;
D O I
10.1021/acs.jpcc.4c01292
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Scaling and Br & oslash;nsted-Evans-Polanyi (BEP) relations have proven immensely powerful in catalysis theory. The relations provide an understanding of the Sabatier principle in a quantitative fashion, such that we can calculate the adsorption energy that most optimally compromises between a low reaction barrier and a not too strong adsorption. Scaling and BEP relations are usually mapped out for pure metal surfaces, and it is not directly clear how they translate to complex alloy surfaces, e.g., high-entropy alloys (HEAs). The scaling relation between *OH and *OOH is one of the most studied and best understood. Generally, both *OH and *OOH adsorb on a single surface atom, so HEAs do not change the established scaling relation but rather widen the distribution of available adsorption energies. The situation can be different for reactions at multiatom surface sites. In the reaction between O* and *CO to form CO2, the species interact with more surface atoms at the initial state compared to the transition state, so for a given reaction energy, HEAs allow for lower activation energies than pure metals. The reason is that HEA surfaces can make the transition state more similar to the initial state without the need of steps or other geometric features.
引用
收藏
页码:10251 / 10258
页数:8
相关论文
共 50 条
  • [31] Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy
    Nokeun Park
    Ikuto Watanabe
    Daisuke Terada
    Yoshihiko Yokoyama
    Peter K. Liaw
    Nobuhiro Tsuji
    Metallurgical and Materials Transactions A, 2015, 46 : 1481 - 1487
  • [32] Origin of high strength in the CoCrFeNiPd high-entropy alloy
    Yin, Binglun
    Curtin, W. A.
    MATERIALS RESEARCH LETTERS, 2020, 8 (06): : 209 - 215
  • [33] Microstructure and property of AlTiCrFeNiCu high-entropy alloy
    Pi, Jin-Hong
    Pan, Ye
    Zhang, Lu
    Zhang, Hui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (18) : 5641 - 5645
  • [34] Senary refractory high-entropy alloy CrxMoNbTaVW
    Zhang, B.
    Gao, M. C.
    Zhang, Y.
    Guo, S. M.
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2015, 51 : 193 - 201
  • [35] Equation of State of an AlCoCrCuFeNi High-Entropy Alloy
    Gong Li
    Daihong Xiao
    Pengfei Yu
    Lijun Zhang
    Peter K. Liaw
    Yanchun Li
    Riping Liu
    JOM, 2015, 67 : 2310 - 2313
  • [36] Heterostructure Engineering in High-Entropy Alloy Catalysts
    Shi, Wenhui
    Liu, Hanwen
    Liu, Shijin
    Chen, Jinli
    Tan, Fatang
    Wan, Jun
    Yao, Yonggang
    SUSMAT, 2024,
  • [37] Nanomechanical Behavior of CoCrFeMnNi High-Entropy Alloy
    Mridha, Sanghita
    Das, Santanu
    Aouadi, Samir
    Mukherjee, Sundeep
    Mishra, Rajiv S.
    JOM, 2015, 67 (10) : 2296 - 2302
  • [38] Microstructure and properties of FexCrMnAlCu high-entropy alloy
    Feng, Li
    Yuan, Yudong
    Bian, Chunhua
    Wang, Ning
    Ma, Kai
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (10) : 1245 - 1254
  • [39] Twinning Engineering of a CoCrFeMnNi High-Entropy Alloy
    Moon, Jongun
    Bouaziz, Olivier
    Kim, Hyoung Seop
    Estrin, Yuri
    SCRIPTA MATERIALIA, 2021, 197
  • [40] Thermal stability of AlCoFeMnNi high-entropy alloy
    Karati, Anirudha
    Guruvidyathri, K.
    Hariharan, V. S.
    Murty, B. S.
    SCRIPTA MATERIALIA, 2019, 162 : 465 - 467