Unbiased Scene Graph Generation Using Predicate Similarities

被引:0
|
作者
Matsui, Yusuke [1 ]
Ohashi, Misaki [1 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Informat & Commun Engn, Bunkyo Ku, Tokyo 1138656, Japan
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Task analysis; Knowledge transfer; Feature extraction; Visualization; Training; Computer vision; Transfer learning; Bioinformatics; Genomics; Classification algorithms; Scene classification; Scene graph; unbiased generation; predicate similarities; transfer learning; long-tailed distribution; SMOTE;
D O I
10.1109/ACCESS.2024.3424230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Scene Graphs are widely applied in computer vision as a graphical representation of relationships between objects shown in images. However, these applications have not yet reached a practical stage of development owing to biased training caused by long-tailed predicate distributions. In recent years, many studies have tackled this problem. In contrast, relatively few works have considered predicate similarities as a unique dataset feature which also leads to the biased prediction. Due to the feature, infrequent predicates (e.g., "parked on", "covered in") are easily misclassified as closely-related frequent predicates (e.g., "on", "in"). Utilizing predicate similarities, we propose a new classification scheme that branches the process to several fine-grained classifiers for similar predicate groups. The classifiers aim to capture the differences among similar predicates in detail. We also introduce the idea of transfer learning to enhance the features for the predicates which lack sufficient training samples to learn the descriptive representations. Our target here is to improve the average precision scores even for the instances with the tail predicators. The results of extensive experiments on the Visual Genome dataset show that the combination of our method and an existing debiasing approach greatly improves performance on tail predicates in challenging SGCls/SGDet tasks. Nonetheless, the overall performance of the proposed approach does not reach that of the current state of the art, so further analysis remains necessary as future work.
引用
收藏
页码:95507 / 95516
页数:10
相关论文
共 50 条
  • [31] Dual-Branch Hybrid Learning Network for Unbiased Scene Graph Generation
    Zheng, Chaofan
    Gao, Lianli
    Lyu, Xinyu
    Zeng, Pengpeng
    El Saddik, Abdulmotaleb
    Shen, Heng Tao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1743 - 1756
  • [32] Attention redirection transformer with semantic oriented learning for unbiased scene graph generation
    Zhang, Ruonan
    An, Gaoyun
    Cen, Yigang
    Ruan, Qiuqi
    PATTERN RECOGNITION, 2025, 158
  • [33] Bridging Visual and Textual Semantics: Towards Consistency for Unbiased Scene Graph Generation
    Zhang, Ruonan
    An, Gaoyun
    Hao, Yiqing
    Wu, Dapeng Oliver
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (11) : 7102 - 7119
  • [34] Triple Correlations-Guided Label Supplementation for Unbiased Video Scene Graph Generation
    Wang, Wenqing
    Gao, Kaifeng
    Luo, Yawei
    Jiang, Tao
    Gao, Fei
    Shao, Jian
    Sun, Jianwen
    Xiao, Jun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5153 - 5163
  • [35] A New Training Data Organization Form and Training Mode for Unbiased Scene Graph Generation
    Xu, Hongbo
    Wang, Lichun
    Xu, Kai
    Fu, Fangyu
    Yin, Baocai
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5295 - 5305
  • [36] HiLo: Exploiting High Low Frequency Relations for Unbiased Panoptic Scene Graph Generation
    Zhou, Zijian
    Shi, Miaojing
    Caesar, Holger
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21580 - 21591
  • [37] Stacked Hybrid-Attention and Group Collaborative Learning for Unbiased Scene Graph Generation
    Dong, Xingning
    Gan, Tian
    Song, Xuemeng
    Wu, Jianlong
    Cheng, Yuan
    Nie, Liqiang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19405 - 19414
  • [38] Skew Class-Balanced Re-Weighting for Unbiased Scene Graph Generation
    Kang, Haeyong
    Yoo, Chang D.
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (01): : 287 - 303
  • [39] State-Aware Compositional Learning Toward Unbiased Training for Scene Graph Generation
    He, Tao
    Gao, Lianli
    Song, Jingkuan
    Li, Yuan-Fang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 43 - 56
  • [40] Multi-View Predicate Recognition for Solving Semantic Ambiguity Problem in Scene Graph Generation
    Tong, Xuezhi
    Jing, Lihua
    Zou, Cong
    Wang, Rui
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON MULTIMEDIA CONTENT GENERATION AND EVALUATION, MCGE 2023: New Methods and Practice, 2023, : 105 - 113