Prediction of Bitcoin Prices Based on Blockchain Information: A Deep Reinforcement Learning Approach

被引:0
|
作者
Khadija, Mnasri [1 ]
Fahmi, Ben Rejab [2 ]
Syrine, Ben Romdhane [2 ]
机构
[1] Univ Lorraine, CEREFIGE Lab, Metz, France
[2] Univ Tunis, Higher Inst Management Tunis, BESTMOD Lab, Tunis, Tunisia
关键词
Bitcoin price prediction; Blockchain information; Deep Reinforcement Learn- ing; CNN-LSTM; Deep Autoencoders; DYNAMICS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bitcoin, the first decentralized cryptocurrency, has attracted significant attention from investors and researchers alike due to its volatile and unpredictable price movements. However, predicting the price of Bitcoin remains a challenging task. This paper presents a detailed literature review on previous studies that have attempted to predict the price of Bitcoin. It discusses the main drivers of Bitcoin prices, including its attractiveness, macroeconomic and financial factors with a particular focus on the use of Blockchain information. We apply time series to daily data for the period from 28/04/2013 to 28/01/2023. We used Python and TensorFlow library version 2.11.0 and propose a deep multimodal reinforcement learning policy combining Convolutional Neural Network (CNN) and Long Shortstudy attempts to predict the price of Bitcoin using a special type of deep neural networks, a Deep Autoencoders. Two results are worth noting: Autoencoders turns out to be the best method of predicting Bitcoin prices, and Bitcoin-specific Blockchain information is the most important variable in predicting Bitcoin prices. This study highlights the potential utility of incorporating Blockchain factors in price prediction models. Also, our findings show that toward predicting Bitcoin prices. These conclusions provide decision support for investors and a reference for the governments to design better regulatory policies.
引用
收藏
页码:2416 / 2433
页数:18
相关论文
共 50 条
  • [31] Deep reinforcement learning approach for computation offloading in blockchain-enabled communications systems
    Tanweer Alam
    Arif Ullah
    Mohamed Benaida
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 9959 - 9972
  • [32] Blockchain-based public auditing with deep reinforcement learning for cloud storage
    Li, Jiaxing
    Wu, Jigang
    Jiang, Lin
    Li, Jin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [33] Deep reinforcement learning based task offloading in blockchain enabled smart city
    Jin K.
    Wu W.
    Gao Y.
    Yin Y.
    Si P.
    High Technology Letters, 2023, 29 (03) : 295 - 304
  • [34] Deep Reinforcement Learning based Task Scheduling in Mobile Blockchain for IoT Applications
    Gao, Yang
    Wu, Wenjun
    Nan, Haixiang
    Sun, Yang
    Si, Pengbo
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [35] Deep reinforcement learning approach for computation offloading in blockchain-enabled communications systems
    Alam, Tanweer
    Ullah, Arif
    Benaida, Mohamed
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (8) : 9959 - 9972
  • [36] Smart Home Gateway Based on Integration of Deep Reinforcement Learning and Blockchain Framework
    Shahbazi, Zeinab
    Byun, Yung-Cheol
    Kwak, Ho-Young
    PROCESSES, 2021, 9 (09)
  • [37] Secure Computation Offloading in Blockchain Based IoT Networks With Deep Reinforcement Learning
    Nguyen, Dinh C.
    Pathirana, Pubudu N.
    Ding, Ming
    Seneviratne, Aruna
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (04): : 3192 - 3208
  • [39] Deep reinforcement learning based task offloading in blockchain enabled smart city
    金凯琦
    WU Wenjun
    GAO Yang
    YIN Yufen
    SI Pengbo
    High Technology Letters, 2023, 29 (03) : 295 - 304
  • [40] FedRLChain: Secure Federated Deep Reinforcement Learning With Blockchain
    Chowdhury, Sujit
    Mukherjee, Arnab
    Halder, Raju
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (06) : 3865 - 3878