Zeolitic Imidazolate Framework-67-Derived Co3O4/α-MnO2 Composite as an Efficient Cathode for Aqueous Zinc-Ion Batteries

被引:4
|
作者
Anand, Abhas [1 ]
Dixit, Ram Ji [1 ]
Verma, Anil [1 ]
Basu, Suddhasatwa [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Chem Engn, New Delhi 110016, India
关键词
ELECTROCHEMICAL ENERGY-STORAGE; ANODE MATERIALS; CARBON; CHEMISTRY; CATALYST; ARRAYS;
D O I
10.1021/acs.energyfuels.4c01252
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Co3O4/alpha-MnO2 composite was prepared as an efficient cathode host for zinc-ion battery (ZIB) application by utilizing a cobalt-based zeolitic imidazolate framework (ZIF-67) template. alpha-MnO2 nanorods with an open end served as foreign particles that introduced structural inhomogeneity, thereby facilitating the process of heterogeneous nucleation of ZIF-67 crystals to form Co3O4/alpha-MnO2 composite. CR-2032 coin cell configuration was used to evaluate the electrochemical performance of the Zn//Co3O4/alpha-MnO2 battery in an electrolyte mixture containing 2 M ZnSO4 and 0.1 M MnSO4 aqueous solution. The battery delivered 243.51 and 140.2 mAh<middle dot>g(-1) of initial discharge capacities at C-rates of 0.4 and 4 C, respectively (1 C = 248.67 mA<middle dot>g(-1)). The cycling performance tests for 300 cycles were performed at different values of C-rate, namely, 0.4, 1.2, 2, and 4 C, with discharge capacity retentions of 88.88, 86.16, 90.78, and 100.39%, respectively. Moreover, the long-term cycling test at 4 C for the assembled Zn//Co3O4/alpha-MnO2 battery showed a high discharge capacity retention of 90.59% after 2000 galvanostatic charge-discharge cycles with nearly 100% Coulombic efficiency. The present work also provided the calculation of the Zn2+ diffusion coefficient using the cyclic voltammetry technique, with the calculated values of Zn2+ diffusivity in the order of 10(-9) cm(2)<middle dot>s(-1). Furthermore, the viability of the Zn//Co3O4/alpha-MnO2 battery for practical implementation was also examined by self-discharge test, which showed similar to 86.9% of open-circuit voltage retention over a period of 60 days. The present work paves the way for practical implementation of aqueous ZIBs using Co-Mn-based cathodes.
引用
收藏
页码:13365 / 13378
页数:14
相关论文
共 50 条
  • [31] MnO2@Co3O4 heterostructure composite as high-performance cathode material for rechargeable aqueous zinc-ion battery
    Jianhang Sun
    Pengchao Zhang
    Ying Ba
    Juncai Sun
    Ionics, 2023, 29 : 1913 - 1921
  • [32] δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries
    Khamsanga, Sonti
    Pornprasertsuk, Rojana
    Yonezawa, Tetsu
    Mohamad, Ahmad Azmin
    Kheawhom, Soorathep
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [33] δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries
    Sonti Khamsanga
    Rojana Pornprasertsuk
    Tetsu Yonezawa
    Ahmad Azmin Mohamad
    Soorathep Kheawhom
    Scientific Reports, 9
  • [34] Metal-Organic Framework-Derived NiO@C as a Host for MnO2 Cathode of Stable Zinc-Ion Batteries
    Lam, Do Van
    Dung, Dao Thi
    Kim, Jae-Hyun
    Lee, Seung-Mo
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (10): : 5368 - 5377
  • [35] Constructing accommodational space in MnO2 cathode for Mn2+ transport and electrodeposition for aqueous zinc-ion batteries
    Qiong Wu
    Siqi Li
    Yuan Han
    Chao Yang
    Jiangang Gao
    Ionics, 2022, 28 : 4295 - 4301
  • [36] Constructing accommodational space in MnO2 cathode for Mn2+ transport and electrodeposition for aqueous zinc-ion batteries
    Wu, Qiong
    Li, Siqi
    Han, Yuan
    Yang, Chao
    Gao, Jiangang
    IONICS, 2022, 28 (09) : 4295 - 4301
  • [37] Zeolitic Imidazolate Framework-67-Derived CeO2@Co3O4 Core-Shell Microspheres with Enhanced Catalytic Activity toward Toluene Oxidation
    Fang, Wei
    Chen, Jinghuan
    Zhou, Xiangyuan
    Chen, Jianjun
    Ye, Zhiping
    Li, Junhua
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (22) : 10328 - 10337
  • [38] Fabrication of a 3D structure MnO2 electrode with high MnO2 mass loading as the cathode for high-performance aqueous zinc-ion batteries
    Nie, Nantian
    Wang, Fuliang
    Yao, Wenhao
    ELECTROCHIMICA ACTA, 2023, 472
  • [39] α-Mno2 nanorod/onion-like carbon composite cathode material for aqueous zinc-ion battery
    Palaniyandy, Nithyadharseni
    Kebede, Mesfin A.
    Raju, Kumar
    Ozoemena, Kenneth I.
    le Roux, Lukas
    Mathe, Mkhulu K.
    Jayaprakasam, Ramasamy
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 230 : 258 - 266
  • [40] ε-MnO2@C cathode with high stability for aqueous zinc-ion batteries
    Zhao, Wenyu
    Kong, Qingquan
    Wu, Xiaoqiang
    An, Xuguang
    Zhang, Jing
    Liu, Xiaonan
    Yao, Weitang
    APPLIED SURFACE SCIENCE, 2022, 605