Anchoring ZnIn2S4 nanosheets on cross-like FeSe2 to construct photothermal-enhanced S-scheme heterojunction for photocatalytic H2 evolution

被引:5
|
作者
Liu, Xin [1 ]
Wang, Shikai [1 ]
Cao, Jinghao [1 ]
Yu, Jiahui [1 ]
Dong, Jixian [1 ]
Zhao, Yutong [1 ]
Zhao, Fuping [1 ]
Zhang, Dafeng [1 ]
Pu, Xipeng [1 ]
机构
[1] Liaocheng Univ, Sch Mat Sci & Engn, Shandong Prov Key Lab Chem Energy Storage & Novel, Liaocheng 252000, Peoples R China
关键词
ZnIn; 2; S; 4; FeSe; Photothermal; S -scheme heterojunction; Core; -shell; Photocatalytic hydrogen evolution; HETEROSTRUCTURE; EFFICIENCY; WATER;
D O I
10.1016/j.jcis.2024.06.106
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rational design of the morphology and heterojunction to accelerate the separation of electron-hole pairs has played an indispensable role in improving the photocatalytic hydrogen evolution. ZnIn2S4 (ZIS) has aroused considerable attention in solar-to-chemical energy conversion due to its remarkable photoelectrical properties and relatively negative energy band, whereas it still suffers from the severe photogenerated carrier recombination and catalyst aggregation. Herein, guided by density functional theory calculations, the constructed FeSe2@ZnIn2S4 (FS@ZIS) heterojunction model has a hydrogen Gibbs free energy closer to zero compared with pure ZIS and FS, which is beneficial for hydrogen adsorption and desorption on the photocatalyst surface. Therefore, a novel cross-like core-shell FS@ZIS Step-scheme (S-scheme) heterojunction was synthesized successfully by insitu growing ZIS nanosheets on the surface of cross-like FS. The structure with cross-like core-shell morphology not only inhibits the agglomeration of ZIS to increase specific surface area, but also provides a tight interface with S-scheme heterojunction. Moreover, the S-scheme heterojunction with a tight interface can effectively separate electron-hole pairs, leaving photoinduced charges with higher potentials. Furthermore, FS@ZIS-20 possesses exceptional photothermal capabilities, enabling the conversion of optical energy from visible and near infrared light to heat, thereby further enhancing the photocatalysis reaction. As a result, the cross-like core-shell FS@ZIS S-scheme heterojunction exhibits an excellent photocatalytic hydrogen evolution rate (7.640 mmol g-1 h-1), which is 24 times higher than that of pure ZIS (0.319 mmol g-1 h-1) under visible and near infrared light. Furthermore, employing more in-depth density functional theory calculations further investigates the charge transfer pathway of the FS@ZIS S -scheme heterojunction. This work provides insights into the construction of S -scheme heterojunctions with core-shell structure and photothermal effect for photocatalytic evolution hydrogen.
引用
收藏
页码:463 / 474
页数:12
相关论文
共 50 条
  • [1] ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution
    Dai, Meng
    He, Zuoli
    Zhang, Peng
    Li, Xin
    Wang, Shuguang
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 122 : 231 - 242
  • [2] Facile fabrication of S-scheme MnCo2S4/ZnIn2S4 heterojunction for photocatalytic H2 evolution
    Xiao, Yuanwen
    Tian, Jingzhuo
    Miao, Hui
    Liu, Enzhou
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1003
  • [3] Ni3Se4/ZnIn2S4 S-scheme heterojunction for efficient photocatalytic H2 evolution
    Feng, Keting
    Wu, Kangqi
    Fan, Jun
    Sun, Tao
    Liu, Enzhou
    [J]. MATERIALS LETTERS, 2024, 363
  • [4] Photothermal-Enhanced S-Scheme Heterojunction of Hollow Core-Shell FeNi2S4@ZnIn2S4 toward Photocatalytic Hydrogen Evolution
    Wang, Shikai
    Zhang, Dong
    Pu, Xipeng
    Zhang, Lizhi
    Zhang, Dafeng
    Jiang, Jizhou
    [J]. SMALL, 2024,
  • [5] A novel hydrangea-like ZnIn2S4/FePO4 S-scheme heterojunction via internal electric field for boosted photocatalytic H2 evolution
    Wang, Shikai
    Zhang, Dong
    Zhang, Dafeng
    Pu, Xipeng
    Liu, Junchang
    Li, Hengshuai
    Cai, Peiqing
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 967
  • [6] Photocatalytic Properties and Reaction Mechanism of PDI/ZnIn2S4 S-Scheme Heterojunction
    Tang, Hua
    Liu, Yue
    Wang, Lele
    Liu, Qinqin
    [J]. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (01): : 14 - 22
  • [7] Construction of ZnIn2S4/CdS/PdS S-Scheme Heterostructure for Efficient Photocatalytic H2 Production
    Sun, Guotai
    Tai, Zige
    Li, Fan
    Ye, Qian
    Wang, Ting
    Fang, Zhiyu
    Jia, Lichao
    Liu, Wei
    Wang, Hongqiang
    [J]. SMALL, 2023, 19 (27)
  • [8] ZnWO4-Zn In2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution
    Meng Dai
    Zuoli He
    Peng Zhang
    Xin Li
    Shuguang Wang
    [J]. Journal of Materials Science & Technology, 2022, 122 (27) : 231 - 242
  • [9] Efficient photocatalytic H2 evolution over CuCo2S4 decorated ZnIn2S4 with S-scheme charge separation way
    Xiao, Yuanwen
    Tian, Jingzhuo
    Miao, Hui
    Liu, Enzhou
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 : 441 - 449
  • [10] Ag2S-Modified ZnIn2S4 Nanosheets for Photocatalytic H2 Generation
    Liu, Jingyuan
    Chen, Gang
    Sun, Jingxue
    [J]. ACS APPLIED NANO MATERIALS, 2020, 3 (11) : 11017 - 11024