Ni3Se4/ZnIn2S4 S-scheme heterojunction for efficient photocatalytic H2 evolution

被引:1
|
作者
Feng, Keting [1 ,2 ]
Wu, Kangqi [3 ]
Fan, Jun [4 ]
Sun, Tao [4 ]
Liu, Enzhou [4 ]
机构
[1] State Engn Lab Low permeabil Oil & Gas Field Explo, Xian 710018, Peoples R China
[2] PetroChina Changqing Oilfield Co, Oil & Gas Technol Res Inst, Xian 710018, Peoples R China
[3] PetroChina Changqing Oilfield Co, 2 Gas Prod Plant, Yulin 719054, Peoples R China
[4] Northwest Univ, Sch Chem Engn, Xian 710069, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar energy materials; Nanocomposites; Photocatalysis;
D O I
10.1016/j.matlet.2024.136255
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photocatalytic water splitting is sustainable technology to obtain green H2. Herein, Ni3Se4/ZnIn2S4 heterojunction was obtained through a two-step hydrothermal method. 5 wt% Ni3Se4/ZnIn2S4 exhibits the most excellent H2 evolution performance and the H2 evolution rate can achieve 38778.0 mu mol center dot g- 1 center dot h-1, which is 5.94 times higher than that of pure ZnIn2S4. Based on the center dot OH free radical capture tests, the enhanced activity is attributed to S-scheme carriers migration mechanism and the abundant Se sites in Ni3Se4 can rapidly capture H+ to produce H2 efficiently. This work expands the application of transition metal selenides in the field of photocatalysis.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Facile fabrication of S-scheme MnCo2S4/ZnIn2S4 heterojunction for photocatalytic H2 evolution
    Xiao, Yuanwen
    Tian, Jingzhuo
    Miao, Hui
    Liu, Enzhou
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1003
  • [2] ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution
    Dai, Meng
    He, Zuoli
    Zhang, Peng
    Li, Xin
    Wang, Shuguang
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 122 : 231 - 242
  • [3] Internal Electric Field-Modulated S-Scheme Ni3Se4/TiO2 Nanoparticle Heterojunction for Efficient Photocatalytic H2 Evolution
    Zhang, Meiling
    Miao, Hui
    Fan, Jun
    Sun, Tao
    Tang, Chunni
    Liu, Enzhou
    [J]. ACS APPLIED NANO MATERIALS, 2023, 6 (19) : 18284 - 18294
  • [4] Construction of ZnIn2S4/CdS/PdS S-Scheme Heterostructure for Efficient Photocatalytic H2 Production
    Sun, Guotai
    Tai, Zige
    Li, Fan
    Ye, Qian
    Wang, Ting
    Fang, Zhiyu
    Jia, Lichao
    Liu, Wei
    Wang, Hongqiang
    [J]. SMALL, 2023, 19 (27)
  • [5] Efficient photocatalytic H2 evolution over CuCo2S4 decorated ZnIn2S4 with S-scheme charge separation way
    Xiao, Yuanwen
    Tian, Jingzhuo
    Miao, Hui
    Liu, Enzhou
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 : 441 - 449
  • [6] Photocatalytic Properties and Reaction Mechanism of PDI/ZnIn2S4 S-Scheme Heterojunction
    Tang H.
    Liu Y.
    Wang L.
    Liu Q.
    [J]. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (01): : 14 - 22
  • [7] Interior and Surface Synergistic Modifications Modulate the SnNb2O6/Ni-Doped ZnIn2S4 S-Scheme Heterojunction for Efficient Photocatalytic H2 Evolution
    Li, Chunxue
    Liu, Xiaoteng
    Ding, Guixiang
    Huo, Pengwei
    Yan, Yan
    Yan, Yongsheng
    Liao, Guangfu
    [J]. INORGANIC CHEMISTRY, 2022, 61 (11) : 4681 - 4689
  • [8] A novel hydrangea-like ZnIn2S4/FePO4 S-scheme heterojunction via internal electric field for boosted photocatalytic H2 evolution
    Wang, Shikai
    Zhang, Dong
    Zhang, Dafeng
    Pu, Xipeng
    Liu, Junchang
    Li, Hengshuai
    Cai, Peiqing
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 967
  • [9] Fabrication of the SnS2/ZnIn2S4 heterojunction for highly efficient visible light photocatalytic H2 evolution
    Geng, Yanling
    Zou, Xiaoli
    Lu, Yanan
    Wang, Lei
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (22) : 11520 - 11527
  • [10] In-situ preparation of mossy tile-like ZnIn2S4/Cu2MoS4 S-scheme heterojunction for efficient photocatalytic H2 evolution under visible light
    Wang, Shikai
    Zhang, Dafeng
    Su, Ping
    Yao, Xintong
    Liu, Junchang
    Pu, Xipeng
    Li, Hengshuai
    Cai, Peiqing
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 650 : 825 - 835