A higher-order approximation method for jump-diffusion SDEs with a discontinuous drift coefficient

被引:3
|
作者
Przybylowicz, Pawel [1 ]
Schwarz, Verena [2 ]
Szoelgyenyi, Michaela [2 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[2] Univ Klagenfurt, Dept Stat, Univ Str 65-67, A-9020 Klagenfurt, Austria
基金
奥地利科学基金会;
关键词
equations; Discontinuous drift; Strong convergence rate; Jump -adapted scheme; Higher -order scheme; Jump-diffusion stochastic differential; STOCHASTIC DIFFERENTIAL-EQUATIONS; EULER-MARUYAMA SCHEME; STRONG-CONVERGENCE; MULTIDIMENSIONAL SDES; GLOBAL APPROXIMATION; BACKWARD EULER; STABILITY; DRIVEN; RATES;
D O I
10.1016/j.jmaa.2024.128319
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the first higher-order approximation scheme for solutions of jumpdiffusion stochastic differential equations with discontinuous drift. For this transformation-based jump-adapted quasi-Milstein scheme, we prove Lp-convergence order 3/4. To obtain this result, we prove that under slightly stronger assumptions (but still weaker than assumptions applied before) a related jump-adapted quasiMilstein scheme has convergence order 3/4; in a special case it even has convergence order 1. Order 3/4 is conjectured to be optimal. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:46
相关论文
共 50 条
  • [31] Higher-order polynomial approximation
    Dikusar N.D.
    Mathematical Models and Computer Simulations, 2016, 8 (2) : 183 - 200
  • [32] ASYMPTOTIC STABILITY OF A JUMP-DIFFUSION EQUATION AND ITS NUMERICAL APPROXIMATION
    Chalmers, Graeme D.
    Higham, Desmond J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (02): : 1141 - 1155
  • [33] Markov chains approximation of jump-diffusion stochastic master equations
    Pellegrini, Clement
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (04): : 924 - 948
  • [34] Convoluted smoothed kernel estimation for drift coefficients in jump-diffusion models
    Liu, Naiqi
    Song, Kunyang
    Song, Yuping
    Wang, Xiaochen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (21) : 7354 - 7389
  • [35] A HYBRID METHOD FOR HIGHER-ORDER NONLINEAR DIFFUSION EQUATIONS
    Kim, Junseok
    Sur, Jeanman
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (01): : 179 - 193
  • [36] VARIATIONAL FORMULATION OF A HIGHER-ORDER NODAL DIFFUSION METHOD
    ALTIPARMAKOV, DV
    TOMASEVIC, D
    NUCLEAR SCIENCE AND ENGINEERING, 1990, 105 (03) : 256 - 270
  • [37] HIGHER-ORDER DIFFERENCE METHOD FOR DIFFUSION-THEORY
    ROBINSON, CP
    ECKARD, JD
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1972, 15 (01): : 297 - &
  • [38] A SECOND-ORDER TRIDIAGONAL METHOD FOR AMERICAN OPTIONS UNDER JUMP-DIFFUSION MODELS
    Kwon, Yonghoon
    Lee, Younhee
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (04): : 1860 - 1872
  • [39] A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for solid dynamics
    Lieberman, Evan J.
    Liu, Xiaodong
    Morgan, Nathaniel R.
    Luscher, Darby J.
    Burton, Donald E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 353 : 467 - 490
  • [40] HIGHER-ORDER APPROXIMATION FOR THE DIFFERENCE-OPERATORS IN THE METHOD OF LINES
    PREGLA, R
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1995, 5 (02): : 53 - 55