Minimax Optimal Fixed-Budget Best Arm Identification in Linear Bandits

被引:0
|
作者
Yang, Junwen [1 ]
Tan, Vincent Y. F. [2 ]
机构
[1] Natl Univ Singapore, Inst Operat Res & Analyt, Singapore, Singapore
[2] Natl Univ Singapore, Inst Operat Res & Analyt, Dept Math, Dept Elect & Comp Engn, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
MULTIARMED BANDIT; ELIMINATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of best arm identification in linear bandits in the fixed-budget setting. By leveraging properties of the G-optimal design and incorporating it into the arm allocation rule, we design a parameter-free algorithm, Optimal Design-based Linear Best Arm Identification (OD-LinBAI). We provide a theoretical analysis of the failure probability of OD-LinBAI. Instead of all the optimality gaps, the performance of OD-LinBAI depends only on the gaps of the top d arms, where d is the effective dimension of the linear bandit instance. Complementarily, we present a minimax lower bound for this problem. The upper and lower bounds show that OD-LinBAI is minimax optimal up to constant multiplicative factors in the exponent, which is a significant theoretical improvement over existing methods (e.g., BayesGap, Peace, LinearExploration and GSE), and settles the question of ascertaining the difficulty of learning the best arm in the fixed-budget setting. Finally, numerical experiments demonstrate considerable empirical improvements over existing algorithms on a variety of real and synthetic datasets.
引用
收藏
页数:14
相关论文
共 46 条
  • [21] Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a Differentially Private Scheme
    Nikolakakis, Konstantinos E.
    Kalogerias, Dionysios S.
    Sheffet, Or
    Sarwate, Anand D.
    Nikolakakis, Konstantinos E. (k.nikolakakis@rutgers.edu), 1600, Institute of Electrical and Electronics Engineers Inc. (02): : 534 - 548
  • [22] Best arm identification in multi-armed bandits with delayed feedback
    Grover, Aditya
    Markov, Todor
    Attia, Peter
    Jin, Norman
    Perkins, Nicholas
    Cheong, Bryan
    Chen, Michael
    Yang, Zi
    Harris, Stephen
    Chueh, William
    Ermon, Stefano
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [23] Best-Arm Identification in Correlated Multi-Armed Bandits
    Gupta S.
    Joshi G.
    Yagan O.
    IEEE Journal on Selected Areas in Information Theory, 2021, 2 (02): : 549 - 563
  • [24] SPRT-Based Efficient Best Arm Identification in Stochastic Bandits
    Mukherjee A.
    Tajer A.
    IEEE Journal on Selected Areas in Information Theory, 2023, 4 : 128 - 143
  • [25] Best Arm Identification in Restless Markov Multi-Armed Bandits
    Karthik, P. N.
    Reddy, Kota Srinivas
    Tan, Vincent Y. F.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (05) : 3240 - 3262
  • [26] Fixed Budget Beam Identification in Millimeter Wave Systems via Unimodal Bandits
    Ghosh, Debamita
    Hanawal, Manjesh K.
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [27] UB3: Fixed Budget Best Beam Identification in mmWave Massive MISO via Pure Exploration Unimodal Bandits
    Ghosh D.
    Hanawal M.K.
    Zlatanov N.
    IEEE Transactions on Wireless Communications, 2024, 23 (10) : 1 - 1
  • [28] Best Arm Identification for Both Stochastic and Adversarial Multi-armed Bandits
    Zhang, Hantao
    Shen, Cong
    2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 385 - 389
  • [29] A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits
    Barrier, Antoine
    Garivier, Aurelien
    Kocak, Tomas
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [30] Probabilistic Sequential Shrinking: A Best Arm Identification Algorithm for Stochastic Bandits with Corruptions
    Zhong, Zixin
    Cheung, Wang Chi
    Tan, Vincent Y. F.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139