Minimax Optimal Fixed-Budget Best Arm Identification in Linear Bandits

被引:0
|
作者
Yang, Junwen [1 ]
Tan, Vincent Y. F. [2 ]
机构
[1] Natl Univ Singapore, Inst Operat Res & Analyt, Singapore, Singapore
[2] Natl Univ Singapore, Inst Operat Res & Analyt, Dept Math, Dept Elect & Comp Engn, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
MULTIARMED BANDIT; ELIMINATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of best arm identification in linear bandits in the fixed-budget setting. By leveraging properties of the G-optimal design and incorporating it into the arm allocation rule, we design a parameter-free algorithm, Optimal Design-based Linear Best Arm Identification (OD-LinBAI). We provide a theoretical analysis of the failure probability of OD-LinBAI. Instead of all the optimality gaps, the performance of OD-LinBAI depends only on the gaps of the top d arms, where d is the effective dimension of the linear bandit instance. Complementarily, we present a minimax lower bound for this problem. The upper and lower bounds show that OD-LinBAI is minimax optimal up to constant multiplicative factors in the exponent, which is a significant theoretical improvement over existing methods (e.g., BayesGap, Peace, LinearExploration and GSE), and settles the question of ascertaining the difficulty of learning the best arm in the fixed-budget setting. Finally, numerical experiments demonstrate considerable empirical improvements over existing algorithms on a variety of real and synthetic datasets.
引用
收藏
页数:14
相关论文
共 46 条
  • [1] Minimax Optimal Algorithms for Fixed-Budget Best Arm Identification
    Komiyama, Junpei
    Tsuchiya, Taira
    Honda, Junya
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [2] Fixed-Budget Best-Arm Identification with Heterogeneous Reward Variances
    Lalitha, Anusha
    Kalantari, Kousha
    Ma, Yifei
    Deoras, Anoop
    Kveton, Branislav
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1164 - 1173
  • [3] Optimal Best-arm Identification in Linear Bandits
    Jedra, Yassir
    Proutiere, Alexandre
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [4] Optimal Best Arm Identification with Fixed Confidence in Restless Bandits
    Karthik P.N.
    Tan V.Y.F.
    Mukherjee A.
    Tajer A.
    IEEE Transactions on Information Theory, 2024, 70 (10) : 1 - 1
  • [5] Best-Arm Identification in Linear Bandits
    Soare, Marta
    Lazaric, Alessandro
    Munos, Remi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [6] Best arm identification in generalized linear bandits
    Kazerouni, Abbas
    Wein, Lawrence M.
    OPERATIONS RESEARCH LETTERS, 2021, 49 (03) : 365 - 371
  • [7] Best Arm Identification in Linear Bandits with Linear Dimension Dependency
    Tao, Chao
    Blanco, Saul A.
    Zhou, Yuan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [8] On Best-Arm Identification with a Fixed Budget in Non-Parametric Multi-Armed Bandits
    Barrier, Antoine
    Garivier, Aurelien
    Stoltz, Gilles
    INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 201, 2023, 201 : 136 - 181
  • [9] Best arm identification for contaminated bandits
    Altschuler, Jason
    Brunel, Victor-Emmanuel
    Malek, Alan
    Journal of Machine Learning Research, 2019, 20
  • [10] Best Arm Identification for Contaminated Bandits
    Altschuler, Jason
    Brunel, Victor-Emmanuel
    Malek, Alan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20