Quantifying NOx point sources with Landsat and Sentinel-2 satellite observations of NO2 plumes

被引:3
|
作者
Varon, Daniel J. [1 ]
Jervis, Dylan [2 ]
Pandey, Sudhanshu [3 ]
Gallardo, Sebastian L. [4 ]
Balasus, Nicholas [1 ]
Yang, Laura Hyesung [1 ]
Jacob, Daniel J. [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] GHGSat Inc, Montreal, PQ H2W 1Y5, Canada
[3] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[4] Ctr At Bariloche, San Carlos De Bariloche, Argentina
关键词
nitrogen oxides; air pollution; point sources; satellites; remote sensing; ABSORPTION CROSS-SECTIONS; EMISSIONS; TROPOMI; MISSION; RETRIEVAL; ALGORITHM; LIFETIMES; CATALOG; URBAN;
D O I
10.1073/pnas.2317077121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We show that the Landsat and Sentinel - 2 satellites can detect NO 2 plumes from large point sources at 10 to 60 m pixel resolution in their blue and ultrablue bands. We use the resulting NO 2 plume imagery to quantify nitrogen oxides (NO x ) emission rates for several power plants in Saudi Arabia and the United States, including a 13 - y analysis of 132 Landsat plumes from Riyadh power plant 9 from 2009 through 2021. NO 2 in the plumes initially increases with distance from the source, likely reflecting recovery from ozone titration. The fine pixel resolutions of Landsat and Sentinel - 2 enable separation of individual point sources and stacks, including in urban background, and the long records enable examination of multidecadal emission trends. Our inferred NO x emission rates are consistent with previous estimates to within a precision of about 30%. Sources down to - 500 kg h -1 can be detected over bright, quasi - homogeneous surfaces. The 2009 to 2021 data for Riyadh power plant 9 show a strong summer peak in emissions, consistent with increased power demand for air conditioning, and a marginal slow decrease the introduction of Saudi Arabia's Ambient Air Standard 2012.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A SURFACE ALBEDO PRODUCT AT HIGH SPATIAL RESOLUTION FROM A COMBINATION OF SENTINEL-2 AND LANDSAT-8 OBSERVATIONS
    Roujean, Jean-Louis
    Olioso, Albert
    Ceschia, Eric
    Hagolle, Olivier
    Weiss, Marie
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8169 - 8172
  • [42] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    SCIENCE OF REMOTE SENSING, 2021, 3
  • [43] Synergistic use of Sentinel-1, Sentinel-2, and Landsat 8 in predicting forest variables
    Fang, Gengsheng
    Xu, Hao
    Yang, Sheng-, I
    Lou, Xiongwei
    Fang, Luming
    ECOLOGICAL INDICATORS, 2023, 151
  • [44] Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
    Quintana-Molina, Jose Rodolfo
    Sanchez-Cohen, Ignacio
    Jimenez-Jimenez, Sergio Ivan
    Marcial-Pablo, Mariana de Jesus
    Trejo-Calzada, Ricardo
    Quintana-Molina, Emilio
    REVISTA DE TELEDETECCION, 2023, (62): : 21 - 38
  • [45] Cross-Comparison of Snow Albedo Products Derived from Satellite (Sentinel-2 and Landsat 8) Optical Data
    Fan, Yan
    Yu, Jie
    Liu, Wenting
    3RD INTERNATIONAL FORUM ON GEOSCIENCE AND GEODESY, 2021, 658
  • [46] Exploiting the Matched Filter to Improve the Detection of Methane Plumes with Sentinel-2 Data
    Wang, Hongzhou
    Fan, Xiangtao
    Jian, Hongdeng
    Yan, Fuli
    REMOTE SENSING, 2024, 16 (06)
  • [47] Assessing coastal bathymetry and climate change impacts on coastal ecosystems using Landsat 8 and Sentinel-2 satellite imagery
    Mokhtar, Kasypi
    Chuah, Lai Fatt
    Abdullah, Mohd Azhafiz
    Oloruntobi, Olakunle
    Ruslan, Siti Marsila Mhd
    Albasher, Gadah
    Ali, Atif
    Akhtar, Muhammad Saeed
    ENVIRONMENTAL RESEARCH, 2023, 239
  • [48] Useable Machine Learning for Sentinel-2 multispectral satellite imagery
    Langevin, Scott
    Bethune, Chris
    Horne, Philippe
    Kramer, Steve
    Gleason, Jeffrey
    Johnson, Ben
    Barnett, Ezekiel
    Husain, Fahd
    Bradley, Adam
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [49] MAPPING AND MONITORING WETLANDS USING SENTINEL-2 SATELLITE IMAGERY
    Kaplan, G.
    Avdan, U.
    4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 4-4 (W4): : 271 - 277
  • [50] A fast radiometric correction method for Sentinel-2 satellite images
    Moradi, Elahe
    Sharifi, Alireza
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2021, 93 (10): : 1709 - 1714