A Descriptive and Predictive Analysis Tool for Criminal Data: A Case Study from Brazil

被引:0
|
作者
Andrade, Yan [1 ]
Pimenta, Matheus [3 ]
Amarante, Gabriel [3 ]
Faria, Antonio Hot [2 ,3 ]
Vilas-Boas, Marcelo [2 ]
da Silva, Joao Paulo [2 ]
Rocha, Felipe [2 ]
da Silva, Jamicel [2 ]
Meira Jr, Wagner [3 ]
Teodoro, George [3 ]
Rocha, Leonardo [1 ]
Ferreira, Renato [3 ]
机构
[1] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, Brazil
[2] Policia Mil Minas Gerais, Belo Horizonte, MG, Brazil
[3] Univ Fed Minas Gerais, Belo Horizonte, MG, Brazil
关键词
D O I
10.1007/978-3-031-64608-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Addressing the challenge of crime is crucial for governing bodies, requiring informed strategies. This article examines the underutilization of detailed criminal data, collaborating with the Military Police of Minas Gerais, Brazil. We propose a new methodology, materialized in a tool, that is able to transform raw data into strategic information for public security decision-making. The tool evaluation unfolds in three phases: characterizing the data, a descriptive analysis of a real case study, and a predictive analysis. This work highlights the untapped potential in detailed criminal data, emphasizing the pivotal role of precise analysis in deciphering complex dynamics. Collaborating with law enforcement aims to bridge the gap between data abundance and actionable insights for effective public security strategies.
引用
收藏
页码:151 / 169
页数:19
相关论文
共 50 条
  • [21] Mortality by cryptococcosis in Brazil from 2000 to 2012 A descriptive epidemiological study
    Soares, Emmanuel Alves
    Lazera, Marcia dos Santos
    Wanke, Bodo
    Ferreira, Marcela de Faria
    Carvalhaes de Oliveira, Raquel Vasconcellos
    Oliveira, Adeno Goncalves
    Coutinho, Ziadir Francisco
    PLOS NEGLECTED TROPICAL DISEASES, 2019, 13 (07):
  • [22] Decision Trees as a Tool for Data Analysis. Elections in Barcelona: A Case Study
    Armengol, E.
    Garcia-Cerdana, A.
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2020), 2020, 12256 : 261 - 272
  • [23] Network analysis of pig movement data as an epidemiological tool: an Austrian case study
    Gavrila A. Puspitarani
    Reinhard Fuchs
    Klemens Fuchs
    Andrea Ladinig
    Amélie Desvars-Larrive
    Scientific Reports, 13 (1)
  • [24] Network analysis of pig movement data as an epidemiological tool: an Austrian case study
    Puspitarani, Gavrila A.
    Fuchs, Reinhard
    Fuchs, Klemens
    Ladinig, Andrea
    Desvars-Larrive, Amelie
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [25] Quantum GIS Based Descriptive and Predictive Data Analysis for Effective Planning of Waste Management
    Imran
    Ahmad, Shabir
    Kim, Do Hyeun
    IEEE ACCESS, 2020, 8 : 46193 - 46205
  • [26] A descriptive analysis of mathematics curricular materials from a pedagogical perspective - A case study of fractions
    Carnine, D
    Jitendra, AK
    Silbert, J
    REMEDIAL AND SPECIAL EDUCATION, 1997, 18 (02) : 66 - 81
  • [27] Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry
    Fernandes, Marta
    Canito, Alda
    Bolon-Canedo, Veronica
    Conceicao, Luis
    Praca, Isabel
    Marreiros, Goreti
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2019, 46 : 252 - 262
  • [28] IPMP 2013-A comprehensive data analysis tool for predictive microbiology
    Huang, Lihan
    INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2014, 171 : 100 - 107
  • [29] A Predictive Tool For Grid Data Analysis Using Machine Learning Algorithms
    Penn, David
    Subburaj, Vinitha Hannah
    Subburaj, Anitha Sarah
    Harral, Mark
    2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 1071 - 1077
  • [30] Data Analytics Towards Predictive Maintenance for Industrial Ovens A Case Study Based on Data Analysis of Various Sensors Data
    Rousopoulou, Vaia
    Nizamis, Alexandros
    Giugliano, Luigi
    Haigh, Peter
    Martins, Luis
    Ioannidis, Dimosthenis
    Tzovaras, Dimitrios
    ADVANCED INFORMATION SYSTEMS ENGINEERING WORKSHOPS (CAISE 2019), 2019, 349 : 83 - 94