Approximation with fractal radial basis functions

被引:0
|
作者
Kumar, D. [1 ]
Chand, A. K. B. [1 ]
Massopust, P. R. [2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] Tech Univ Munich TUM, Dept Math, D-85748 Munich, Germany
关键词
Fractal interpolation functions; Radial basis functions; Strictly positive definite basis function; Shape-preserving approximations; Scattered interpolations; Box dimension; SCATTERED DATA; INTERPOLATION; RECONSTRUCTION; MULTIQUADRICS; SCHEME;
D O I
10.1016/j.cam.2024.116200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article reports on the construction of a general class of fractal radial basis functions (RBFs) in the literature. The fractal RBFs is defined through fractal perturbation of a RBF through suitable choice of iterated function system (IFS). A fractal RBF may be smooth depending on the choice of the germ function and the IFS parameters. Characterizations of conditionally strictly positive definite and strictly positive definite fractal functions are studied using the definition of k-times monotonicity. Furthermore, error estimates and shape-preserving properties for the approximants Pj j defined through linear combination of cardinal fractal RBFs are investigated. Several examples are presented to illustrate the convergence of the operator Pj j across various parameters, highlighting the advantages of the fractal approximant Pj j over the corresponding classical operator P . Finally, estimates for the box dimension of the graphs of approximants derived from fractal radial basis functions are given.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [31] Positive Approximation and Interpolation Using Compactly Supported Radial Basis Functions
    Wu, Jinming
    Zhang, Xiaolei
    Peng, Lihui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [32] Radial Basis Functions
    Giesl, Peter
    CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 61 - 98
  • [33] Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere
    Le Gia, Q. T.
    Sloan, I. H.
    Wendland, H.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (03) : 401 - 412
  • [34] Fractal Approximation of Vector Functions
    Davletbaev, M. F.
    Igudesman, K. B.
    RUSSIAN MATHEMATICS, 2013, 57 (11) : 61 - 64
  • [35] APPROXIMATION OF BACKWARD HEAT CONDUCTION PROBLEM USING GAUSSIAN RADIAL BASIS FUNCTIONS
    Abbasbandy, S.
    Azarnavid, B.
    Hashim, I.
    Alsaedi, A.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 67 - 76
  • [36] Approximation of Feature Vectors in Nonnegative Matrix Factorization with Gaussian Radial Basis Functions
    Zdunek, Rafal
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 616 - 623
  • [37] Adaptive cross-approximation for surface reconstruction using radial basis functions
    Richards Grzhibovskis
    Markus Bambach
    Sergej Rjasanow
    Gerhard Hirt
    Journal of Engineering Mathematics, 2008, 62 : 149 - 160
  • [38] Approximation of input-output maps using Gaussian radial basis functions
    Sandberg, IW
    STABILITY AND CONTROL OF DYNAMICAL SYSTEMS WITH APPLICATIONS: A TRIBUTE TO ANTHONY N. MICHEL, 2003, : 155 - 166
  • [39] Adaptive cross-approximation for surface reconstruction using radial basis functions
    Grzhibovskis, Richards
    Bambach, Markus
    Rjasanow, Sergej
    Hirt, Gerhard
    JOURNAL OF ENGINEERING MATHEMATICS, 2008, 62 (02) : 149 - 160
  • [40] Continuous and discrete least-squares approximation by radial basis functions on spheres
    Le Gia, Q. T.
    Narcowich, F. J.
    Ward, J. D.
    Wendland, H.
    JOURNAL OF APPROXIMATION THEORY, 2006, 143 (01) : 124 - 133