Temporal Variability in Implicit Online Learning

被引:0
|
作者
Campolongo, Nicolo [1 ,3 ]
Orabona, Francesco [2 ]
机构
[1] Univ Milan, Milan, Italy
[2] Boston Univ, Boston, MA 02215 USA
[3] Boston Univ, OPTIMAL Lab, Boston, MA 02215 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020 | 2020年 / 33卷
基金
美国国家科学基金会;
关键词
GRADIENT DESCENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the setting of online learning, Implicit algorithms turn out to be highly successful from a practical standpoint. However, the tightest regret analyses only show marginal improvements over Online Mirror Descent. In this work, we shed light on this behavior carrying out a careful regret analysis. We prove a novel static regret bound that depends on the temporal variability of the sequence of loss functions, a quantity which is often encountered when considering dynamic competitors. We show, for example, that the regret can be constant if the temporal variability is constant and the learning rate is tuned appropriately, without the need of smooth losses. Moreover, we present an adaptive algorithm that achieves this regret bound without prior knowledge of the temporal variability and prove a matching lower bound. Finally, we validate our theoretical findings on classification and regression datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Learning anytime, anywhere: a spatio-temporal analysis for online learning
    Du, Xu
    Zhang, Mingyan
    Shelton, Brett E.
    Hung, Jui-Long
    INTERACTIVE LEARNING ENVIRONMENTS, 2022, 30 (01) : 34 - 48
  • [32] Learning Implicit Temporal Alignment for Few-shot Video Classification
    Zhang, Songyang
    Zhou, Jiale
    He, Xuming
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1309 - 1315
  • [33] Implicit and explicit learning of temporal sequences studied with the process dissociation procedure
    Karabanov, Anke
    Ullen, Fredrik
    JOURNAL OF NEUROPHYSIOLOGY, 2008, 100 (02) : 733 - 739
  • [34] Implicit learning of between-group intervals in auditory temporal structures
    Terry, J.
    Stevens, C. J.
    Weidemann, G.
    Tillmann, B.
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2016, 78 (06) : 1728 - 1743
  • [35] Implicit learning of between-group intervals in auditory temporal structures
    J. Terry
    C. J. Stevens
    G. Weidemann
    B. Tillmann
    Attention, Perception, & Psychophysics, 2016, 78 : 1728 - 1743
  • [36] Temporal Contrastive Learning through implicit non-equilibrium memory
    Falk, Martin J.
    Strupp, Adam T.
    Scellier, Benjamin
    Murugan, Arvind
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [37] Temporal Adaptive Link Quality Prediction with Online Learning
    Liu, Tao
    Cerpa, Alberto E.
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2014, 10 (03)
  • [38] Temporal-Difference Learning for Online Reachability Analysis
    Akametalu, Anayo K.
    Tomlin, Claire J.
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 2508 - 2513
  • [39] Parallel Online Temporal Difference Learning for Motor Control
    Caarls, Wouter
    Schuitema, Erik
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (07) : 1457 - 1468
  • [40] Online Learning of Temporal Logic Formulae for Signal Classification
    Bombara, Giuseppe
    Belta, Calin
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2057 - 2062