Temporal Variability in Implicit Online Learning

被引:0
|
作者
Campolongo, Nicolo [1 ,3 ]
Orabona, Francesco [2 ]
机构
[1] Univ Milan, Milan, Italy
[2] Boston Univ, Boston, MA 02215 USA
[3] Boston Univ, OPTIMAL Lab, Boston, MA 02215 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020 | 2020年 / 33卷
基金
美国国家科学基金会;
关键词
GRADIENT DESCENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the setting of online learning, Implicit algorithms turn out to be highly successful from a practical standpoint. However, the tightest regret analyses only show marginal improvements over Online Mirror Descent. In this work, we shed light on this behavior carrying out a careful regret analysis. We prove a novel static regret bound that depends on the temporal variability of the sequence of loss functions, a quantity which is often encountered when considering dynamic competitors. We show, for example, that the regret can be constant if the temporal variability is constant and the learning rate is tuned appropriately, without the need of smooth losses. Moreover, we present an adaptive algorithm that achieves this regret bound without prior knowledge of the temporal variability and prove a matching lower bound. Finally, we validate our theoretical findings on classification and regression datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Variability of practice and implicit motor learning
    Wulf, G
    Schmidt, RA
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 1997, 23 (04) : 987 - 1006
  • [2] Implicit learning of temporal discriminations in perception
    Virsu, V.
    Aura, M.
    PERCEPTION, 1997, 26 : 123 - 123
  • [3] Online Temporal Pattern Learning
    Farahmand, N.
    Dezfoulian, M. H.
    GhiasiRad, H.
    Mokhtari, A.
    Nouri, A.
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1850 - 1855
  • [4] The implicit learning of metrical and nonmetrical temporal patterns
    Schultz, Benjamin G.
    Stevens, Catherine J.
    Keller, Peter E.
    Tillmann, Barbara
    QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2013, 66 (02): : 360 - 380
  • [5] Implicit and explicit forms of learning temporal structures
    Fezzani, K
    Albinet, C
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2000, 35 (3-4) : 210 - 210
  • [6] Target Detection Adapting to Spectral Variability in Multi-Temporal Hyperspectral Images Using Implicit Contrastive Learning
    Zhang, Xiaodian
    Gao, Kun
    Wang, Junwei
    Wang, Pengyu
    Hu, Zibo
    Yang, Zhijia
    Zhao, Xiaobin
    Li, Wei
    REMOTE SENSING, 2024, 16 (04)
  • [7] Local and integral priming in implicit temporal sequence learning
    Li, L
    Zou, QY
    Jiang, XM
    Lin, L
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2004, 39 (5-6) : 375 - 375
  • [8] A Simple Recurrent Network for Implicit Learning of Temporal Sequences
    Gluege, Stefan
    Hamid, Oussama H.
    Wendemuth, Andreas
    COGNITIVE COMPUTATION, 2010, 2 (04) : 265 - 271
  • [9] A Simple Recurrent Network for Implicit Learning of Temporal Sequences
    Stefan Glüge
    Oussama H. Hamid
    Andreas Wendemuth
    Cognitive Computation, 2010, 2 : 265 - 271
  • [10] Implicit learning of temporal behavior in complex dynamic environments
    Salet, Josh M.
    Kruijne, Wouter
    van Rijn, Hedderik
    PSYCHONOMIC BULLETIN & REVIEW, 2021, 28 (04) : 1270 - 1280