Effective Classification of Heart Disease Using Convolutional Neural Networks

被引:0
|
作者
Lenin, ST. [1 ]
Venkatasalam, K. [2 ]
机构
[1] Mahendra Engn Coll, Dept Informat Technol, Namakkal, Tamil Nadu, India
[2] Mahendra Engn Coll, Dept Comp Sci & Engn, Namakkal, Tamil Nadu, India
关键词
Heart disease classification; Electrocardiogram signals; Sand cat swarm optimization; Generative adversarial network; Restricted Boltzmann machine; Principle component analysis; Classification; SYSTEM; MODEL;
D O I
10.1007/s00034-024-02851-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate classification of heart disease is crucial for precise diagnosis, requiring the disease condition to be predicted with high accuracy. Deep learning-based diagnostic algorithms are developed to learn from and predict disease status using Electrocardiogram signals derived from extensive pathology data. This method can potentially save more lives. Utilizing a large number of Electronic Health Records, this research aims to explore the benefits of deep learning methods and Sand Cat Swarm Optimization (SCSO) for feature selection in predicting patient disease. A dataset containing pathogenic information for patients with various diseases is pre-processed, and the SCSO approach is used to choose the most important features for determining disease severity. A Convolutional Neural Network is used for classification in conjunction with Principal Component Analysis, a Restricted Boltzmann Machine, and deep convolutional Generative Adversarial Network models. These models are developed using the selected features for learning intricate correlations between the input features and the disease state. The effectiveness of methods is assessed with the help of parameters such like accuracy, precision, recall, and F1-score. The proposed model also offers additional benefits for heart disease prognosis, improving accuracy and reliability of disease prediction.
引用
收藏
页码:911 / 935
页数:25
相关论文
共 50 条
  • [21] Using Convolutional Neural Networks for Emoticon Classification
    Burnik, K.
    Knezevic, D. Bjelobrk
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1614 - 1618
  • [22] Towards Effective Classification of Imbalanced Data with Convolutional Neural Networks
    Raj, Vidwath
    Magg, Sven
    Wermter, Stefan
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, 2016, 9896 : 150 - 162
  • [23] Celiac Disease Deep Learning Image Classification Using Convolutional Neural Networks
    Carreras, Joaquim
    JOURNAL OF IMAGING, 2024, 10 (08)
  • [24] Rice Disease Classification Using a Stacked Ensemble of Deep Convolutional Neural Networks
    Wang, Zhibin
    Wei, Yana
    Mu, Cuixia
    Zhang, Yunhe
    Qiao, Xiaojun
    SUSTAINABILITY, 2025, 17 (01)
  • [25] Periodontal Disease Classification with Color Teeth Images Using Convolutional Neural Networks
    Park, Saron
    Erkinov, Habibilloh
    Hasan, Md. Al Mehedi
    Nam, Seoul-Hee
    Kim, Yu-Rin
    Shin, Jungpil
    Chang, Won-Du
    ELECTRONICS, 2023, 12 (07)
  • [26] Fundamental Heart Sound Classification using the Continuous Wavelet Transform and Convolutional Neural Networks
    Meintjes, Andries
    Lowe, Andrew
    Legget, Malcolm
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 409 - 412
  • [27] Classification of Heart Sounds Using Convolutional Neural Network
    Li, Fan
    Tang, Hong
    Shang, Shang
    Mathiak, Klaus
    Cong, Fengyu
    APPLIED SCIENCES-BASEL, 2020, 10 (11):
  • [28] Malware Classification using Deep Convolutional Neural Networks
    Kornish, David
    Geary, Justin
    Sansing, Victor
    Ezekiel, Soundararajan
    Pearlstein, Larry
    Njilla, Laurent
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [29] Age and Gender Classification using Convolutional Neural Networks
    Levi, Gil
    Hassner, Tal
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,
  • [30] Classification of Blurred Flowers Using Convolutional Neural Networks
    Chen, Chao
    Yan, Qi
    Li, Meng
    Tong, Jijun
    ICDLT 2019: 2019 3RD INTERNATIONAL CONFERENCE ON DEEP LEARNING TECHNOLOGIES, 2019, : 71 - 74