Stretchable Functional Nanocomposites for Soft Implantable Bioelectronics

被引:2
|
作者
Kim, Hye Jin [1 ]
Choi, Heewon [2 ,3 ]
Kim, Dae-Hyeong [4 ,5 ]
Son, Donghee [2 ,3 ,4 ]
机构
[1] Yonsei Univ, Dept Biomed Engn, Wonju 26493, South Korea
[2] Inst Basic Sci, Ctr Neurosci Imaging Res, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16419, South Korea
[4] Inst for Basic Sci Korea, Ctr Nanoparticle Res, Seoul 08826, South Korea
[5] Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Stretchable conductive nanocomposites; self-healing capability; tissue adhesion; syringe injectability; soft bioelectronics; implantable devices; LOW-VOLTAGE; ARRAY;
D O I
10.1021/acs.nanolett.4c01163
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Material advances in soft bioelectronics, particularly those based on stretchable nanocomposites-functional nanomaterials embedded in viscoelastic polymers with irreversible or reversible bonds-have driven significant progress in translational medical device research. The unique mechanical properties inherent in the stretchable nanocomposites enable stiffness matching between tissue and device, as well as its spontaneous mechanical adaptation to in vivo environments, minimizing undesired mechanical stress and inflammation responses. Furthermore, these properties allow percolative networks of conducting fillers in the nanocomposites to be sustained even under repetitive tensile/compressive stresses, leading to stable tissue-device interfacing. Here, we present an in-depth review of materials strategies, fabrication/integration techniques, device designs, applications, and translational opportunities of nanocomposite-based soft bioelectronics, which feature intrinsic stretchability, self-healability, tissue adhesion, and/or syringe injectability. Among many, applications to brain, heart, and peripheral nerves are predominantly discussed, and translational studies in certain domains such as neuromuscular and cardiovascular engineering are particularly highlighted.
引用
收藏
页码:8453 / 8464
页数:12
相关论文
共 50 条
  • [21] Guest Editorial: Implantable bioelectronics
    Hanein, Yael
    Goding, Josef
    [J]. APL BIOENGINEERING, 2024, 8 (02):
  • [22] Semi-Implantable Bioelectronics
    Jiaru Fang
    Shuang Huang
    Fanmao Liu
    Gen He
    Xiangling Li
    Xinshuo Huang
    Hui-jiuan Chen
    Xi Xie
    [J]. Nano-Micro Letters, 2022, 14
  • [23] Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics
    Park, Sung Il
    Brenner, Daniel S.
    Shin, Gunchul
    Morgan, Clinton D.
    Copits, Bryan A.
    Chung, Ha Uk
    Pullen, Melanie Y.
    Noh, Kyung Nim
    Davidson, Steve
    Oh, Soong Ju
    Yoon, Jangyeol
    Jang, Kyung-In
    Samineni, Vijay K.
    Norman, Megan
    Grajales-Reyes, Jose G.
    Vogt, Sherri K.
    Sundaram, Saranya S.
    Wilson, Kellie M.
    Ha, Jeong Sook
    Xu, Renxiao
    Pan, Taisong
    Kim, Tae-il
    Huang, Yonggang
    Montana, Michael C.
    Golden, Judith P.
    Bruchas, Michael R.
    Gereau, Robert W.
    Rogers, John A.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (12) : 1280 - +
  • [24] Super-Elastic Phenylalanine Dipeptide Crystal Fibers Enable Monolithic Stretchable Piezoelectrics for Wearable and Implantable Bioelectronics
    Ma, Juan
    Qian, Lili
    Jin, Fei
    Zheng, Weiying
    Li, Tong
    Wei, Zhidong
    Wang, Ting
    Feng, Zhang-Qi
    [J]. ADVANCED FIBER MATERIALS, 2024,
  • [25] Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics
    Sung Il Park
    Daniel S Brenner
    Gunchul Shin
    Clinton D Morgan
    Bryan A Copits
    Ha Uk Chung
    Melanie Y Pullen
    Kyung Nim Noh
    Steve Davidson
    Soong Ju Oh
    Jangyeol Yoon
    Kyung-In Jang
    Vijay K Samineni
    Megan Norman
    Jose G Grajales-Reyes
    Sherri K Vogt
    Saranya S Sundaram
    Kellie M Wilson
    Jeong Sook Ha
    Renxiao Xu
    Taisong Pan
    Tae-il Kim
    Yonggang Huang
    Michael C Montana
    Judith P Golden
    Michael R Bruchas
    Robert W Gereau
    John A Rogers
    [J]. Nature Biotechnology, 2015, 33 : 1280 - 1286
  • [26] Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications
    Llerena Zambrano, Byron
    Renz, Aline F.
    Ruff, Tobias
    Lienemann, Samuel
    Tybrandt, Klas
    Voros, Janos
    Lee, Jaehong
    [J]. ADVANCED HEALTHCARE MATERIALS, 2021, 10 (03)
  • [27] Freestanding, Soft Bioelectronics
    Amella, Alessandro D.
    Patton, Alexander J.
    Martens, Penny J.
    Lovell, Nigel H.
    Poole-Warren, Laura A.
    Green, Rylie A.
    [J]. 2015 7TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2015, : 607 - 610
  • [28] Nanomaterials-based flexible and stretchable bioelectronics
    Jun-Kyul Song
    Kyungsik Do
    Ja Hoon Koo
    Donghee Son
    Dae-Hyeong Kim
    [J]. MRS Bulletin, 2019, 44 : 643 - 656
  • [29] Carbon-based implantable bioelectronics
    Liu, Shan
    Li, Xue
    Gan, Li
    Liu, Sutong
    Luo, Hongzhi
    Du, Xiaoxin
    Loutfy, Samah A.
    Tan, Hong
    Guo, Jinhong
    Li, Chenzhong
    [J]. APPLIED PHYSICS REVIEWS, 2024, 11 (03):
  • [30] Hydrogels and conductive hydrogels for implantable bioelectronics
    Kutay Sagdic
    Emilio Fernández-Lavado
    Massimo Mariello
    Outman Akouissi
    Stéphanie P. Lacour
    [J]. MRS Bulletin, 2023, 48 : 495 - 505