Nemytzkij operators on Besov and Triebel-Lizorkin spaces with power weights: necessary conditions

被引:0
|
作者
Drihem, Douadi [1 ]
机构
[1] Msila Univ, Fac Math & Informat, Dept Math, Lab Funct Anal & Geometry Spaces, POB 166, Msila 28000, Algeria
关键词
Besov spaces; Triebel-Lizorkin spaces; Power weights; Nemytzkij operators; CASE; 1-LESS-THAN-S-LESS-THAN-N/P; SUPERPOSITION; EMBEDDINGS; NIRENBERG; EQUATIONS; CALCULUS;
D O I
10.1007/s40574-024-00413-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G:\mathbb {R\rightarrow R}$$\end{document} be a continuous function. We investigate necessary conditions on G such that {G(f):f is an element of Ap,qs(Rn,|<middle dot>|alpha)}subset of Ap,qs(Rn,|<middle dot>|alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \{G(f):f\in A_{p,q}<^>{s}(\mathbb {R}<^>{n},|\cdot |<^>{\alpha })\}\subset A_{p,q}<^>{s}(\mathbb {R}<^>{n},|\cdot |<^>{\alpha }) \end{aligned}$$\end{document}holds. Here Ap,qs(Rn,|<middle dot>|alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p,q}<^>{s}(\mathbb {R}<^>{n},|\cdot |<^>{\alpha })$$\end{document} stands for either the Besov space Bp,qs(Rn,|<middle dot>|alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{p,q}<^>{s}(\mathbb {R}<^>{n},|\cdot |<^>{\alpha })$$\end{document} or the Triebel-Lizorkin space Fp,qs(Rn,|<middle dot>|alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{p,q}<^>{s}(\mathbb {R}<^>{n},|\cdot |<^>{\alpha })$$\end{document}. These spaces unify and generalize many classical function spaces such as Sobolev spaces with power weights.
引用
收藏
页数:24
相关论文
共 50 条