Physics-Informed Neural Network for Parameter Identification in a Piezoelectric Harvester

被引:0
|
作者
Bai, C. Y. [1 ]
Yeh, F. Y. [1 ]
Shu, Y. C. [1 ]
机构
[1] Natl Taiwan Univ, Inst Appl Mech, Taipei 106, Taiwan
关键词
parameter identification; physics-informed neural network (PINN); experimental sampling; piezoelectric harvester; vibration inverse problem; ENERGY; CIRCUIT; VALIDATION; EFFICIENCY; FRAMEWORK;
D O I
10.1117/12.3009800
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The article aims to develop a physics-informed neural network (PINN) for parameter identification in a piezoelectric harvester using experimental sampling data. The advantage of PINN lies in its efficient inverse calculation of parameters with minimal sampled signals. For instance, with a single piezoelectric oscillator, the data collection process requires only two sets of piezoelectric voltage waveforms acquired at different electric loads and excitation frequencies. The training process involves minimizing the loss function, which comprises the model-based differential equations and the sampled time-domain voltage signals. The results successfully achieve inverse parameter identification, covering mechanical damping ratio, capacitance, and voltage source (force magnitude divided by the piezoelectric constant). In addition, the voltage frequency response, based on the inverse parameters, agrees well with experimental observations, confirming the model's reliability.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Neuromorphic, physics-informed spiking neural network for molecular dynamics
    Pham, Vuong Van
    Muther, Temoor
    Kalantari Dahaghi, Amirmasoud
    Machine Learning: Science and Technology, 2024, 5 (04):
  • [42] Physics-informed convolutional neural network for microgrid economic dispatch
    Ge, Xiaoyu
    Khazaei, Javad
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 40
  • [43] Application of physics-informed neural network in the analysis of hydrodynamic lubrication
    Yang Zhao
    Liang Guo
    Patrick Pat Lam Wong
    Friction, 2023, 11 : 1253 - 1264
  • [44] Application of physics-informed neural network in the analysis of hydrodynamic lubrication
    Zhao, Yang
    Guo, Liang
    Wong, Patrick Pat Lam
    FRICTION, 2023, 11 (07) : 1253 - 1264
  • [45] Physics-Informed neural network solver for numerical analysis in geoengineering
    Chen, Xiao-Xuan
    Zhang, Pin
    Yin, Zhen-Yu
    GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2024, 18 (01) : 33 - 51
  • [46] A Physics-informed Neural Network for Solving Combustion Reaction Kinetics
    Zhang, Shihong
    Zhang, Chi
    Wang, Bosen
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (06): : 1872 - 1881
  • [47] Investigation on aortic hemodynamics based on physics-informed neural network
    Du, Meiyuan
    Zhang, Chi
    Xie, Sheng
    Pu, Fan
    Zhang, Da
    Li, Deyu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 11545 - 11567
  • [48] A Physics-informed Deep Neural Network for Harmonization of CT Images
    Zarei M.
    Paima S.S.
    McCabe C.
    Abadi E.
    Samei E.
    IEEE Transactions on Biomedical Engineering, 2024, 71 (12) : 1 - 12
  • [49] Applications of Physics-Informed Neural Network for Optical Fiber Communications
    Wang, Danshi
    Jiang, Xiaotian
    Song, Yuchen
    Fu, Meixia
    Zhang, Zhiguo
    Chen, Xue
    Zhang, Min
    IEEE COMMUNICATIONS MAGAZINE, 2022, 60 (09) : 32 - 37
  • [50] A Physics-Informed Neural Network-Based Waveguide Eigenanalysis
    Khan, Md Rayhan
    Zekios, Constantinos L.
    Bhardwaj, Shubhendu
    Georgakopoulos, Stavros V.
    IEEE ACCESS, 2024, 12 : 120777 - 120787