A new type of small, dry -filled geotextile tubes is introduced, that, in a stacked formation, can be used as dike cores. Dikes made out of these tubes consist of great potential regarding more resilient flood protection. The geotextile protects the fill from erosion, enabling steeper slopes along with reduced material and less land consumption. The behavior and potential failure mechanisms of such dikes were investigated first by literature research and second by full-scale hydraulic model tests under systematic variation of tube number, number of textile layers, filling ratio, and fill material. The tubes were exposed to the loads of seepage and overflow. Most relevant failure mechanisms were seepage -induced sagging, lateral displacement, and overturning of the upper tube due to overflow. During seepage, the tube height was reduced by up to 22.8 % due to sagging. Overflow led to a lateral displacement of up to 13 cm and, at overflow heights of 23.1 cm and 26.8 cm, to overturning of the upper tube. The present results give new insights into the behavior of innovatively constructed geotextile tubes under hydraulic loads and serve as basis for the development of design rules.