A Nonstoichiometric Pure-Phase Na3.4Fe2.4(PO4)1.4P2O7 Cathode for High-Performance Sodium-Ion Batteries

被引:3
|
作者
Ding, Haiyang [1 ]
Li, Xinlu [1 ]
Li, Hao [1 ]
He, Jiafeng [1 ]
机构
[1] Chongqing Univ, Sch Mat Sci & Engn, Chongqing 400030, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Na3.4Fe2.4(PO4)(1.4)P2O7/C; nonstoichiometry; sodium-ion battery; molecular structure design; NA4FE3(PO4)(2)(P2O7);
D O I
10.1021/acssuschemeng.4c02890
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Iron-based polyanionic cathode materials are expected to be extensively utilized in large-scale energy storage applications. Nevertheless, the synthesis of these stoichiometric polyanions generally introduces impurities, restricting their commercial viability. In this study, a pure-phase Na3.4Fe2.4(PO4)(1.4)P2O7/C (1.4-NFPP/C) material is synthesized through an accurate design of molecular structure. The removal of impurity phases results in excellent electrochemical performance for 1.4-NFPP/C. 1.4-NFPP/C demonstrates a discharge-specific capacity of 112.2 mAh g(-1) at 0.1 C, with a rate performance reaching 70 mAh g(-1) at 30 C. 1.4-NFPP/C demonstrates a remarkable long-term cycle performance, with a capacity retention of 99.7% after 1000 cycles at 10 C. Electrochemical kinetic tests reveal the superior kinetic characteristics of 1.4-NFPP/C. Ex-situ X-ray diffraction (XRD) tests confirm the involvement of a single-phase solid solution reaction in the sodium storage process of 1.4-NFPP/C. Additionally, the full cell demonstrates competitive electrochemical performance and holds potential application value. Thus, the pure-phase Na3.4Fe2.4(PO4)(1.4)P2O7/C material has a great potential application in high-performance sodium-ion batteries.
引用
收藏
页码:10528 / 10536
页数:9
相关论文
共 50 条
  • [31] Crystal-Field Manipulated [P2O7] Distortion for Fast Kinetics of Na4Fe3(PO4)2(P2O7) Cathode for Sodium-Ion Batteries
    Jian, Weishun
    Hu, Xinyu
    Gao, Jinqiang
    Zeng, Jingyao
    Mei, Yu
    Wang, Haoji
    Hong, Ningyun
    Huang, Jiangnan
    Wang, Kai
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Chen, Hongyi
    Ji, Xiaobo
    INORGANIC CHEMISTRY, 2025, 64 (10) : 5228 - 5240
  • [32] Fabrication of graphene-encapsulated Na3V2(PO4)3 as high-performance cathode materials for sodium-ion batteries
    Tao, Shi
    Wang, Xingbo
    Cui, Peixin
    Wang, Yu
    Haleem, Yasir A.
    Wei, Shenghui
    Huang, Weifeng
    Song, Li
    Chu, Wangsheng
    RSC ADVANCES, 2016, 6 (49): : 43591 - 43597
  • [33] Synthesis and Electrochemical Performance of the Na3V2(PO4)3 Cathode for Sodium-Ion Batteries
    Nguyen Van Nghia
    Jafian, Samuel
    Hung, I-Ming
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (05) : 2582 - 2590
  • [34] Electrospun graphene-wrapped Na6.24Fe4.88(P2O7)4 nanofibers as a high-performance cathode for sodium-ion batteries
    Niu, Yubin
    Xu, Maowen
    Dai, Chunlong
    Shen, Bolei
    Li, Chang Ming
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (26) : 17270 - 17277
  • [35] Synthesis and Electrochemical Performance of the Na3V2(PO4)3 Cathode for Sodium-Ion Batteries
    Nguyen Van Nghia
    Samuel Jafian
    I-Ming Hung
    Journal of Electronic Materials, 2016, 45 : 2582 - 2590
  • [36] Submicrometer Rod-Structured Na7V4 (P2O7)4(PO4)/C as a Cathode Material for Sodium-Ion Batteries
    Zhang, Li-ming
    Ren, Nai-Qing
    Wang, Shuo
    Deng, Wen-Jie
    Chen, Fei
    Wen, Zhao-Yin
    Chen, Chun-Hua
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) : 10298 - 10305
  • [37] Exploration of Na7Fe4.5(P2O7)4 as a cathode material for sodium-ion batteries
    Niu, Yubin
    Xu, Maowen
    Shen, Bolei
    Dai, Chunlong
    Li, Chang Ming
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (42) : 16531 - 16535
  • [38] "One stone two birds" design for hollow spherical Na4Fe3(PO4)2P2O7/C cathode enabled high-performance sodium-ion batteries from iron rust
    Chen, Yiqing
    Dong, Chongrui
    Chen, Long
    Fu, Chenglong
    Zeng, Yubin
    Wang, Qin
    Cao, Yuliang
    Chen, Zhongxue
    ECOMAT, 2023, 5 (10)
  • [39] Unlocking the Potential: Na4Fe3(PO4)2(P2O7) Supporting the Innovation of Commercial Sodium-Ion Batteries
    Liu, Cong
    Zhang, Zhi
    Liao, Huanyi
    Jiang, Yumeng
    Zheng, Yifan
    Li, Zhongxi
    Gao, Yihua
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [40] Ultrafast synthesis of Na3 V2 (PO4 )3 cathode for high performance sodium-ion batteries
    Yin, Ruofan
    Guo, Zhaoxin
    Liu, Rui
    Tao, Xian-Sen
    CHINESE CHEMICAL LETTERS, 2025, 36 (02)