Topographical and cell type-specific connectivity of rostral and caudal forelimb corticospinal neuron populations

被引:1
|
作者
Carmona, Lina Marcela [1 ]
Thomas, Eric D. [2 ]
Smith, Kimberly [2 ]
Tasic, Bosiljka [2 ]
Costa, Rui M. [1 ,2 ]
Nelson, Anders [3 ]
机构
[1] Columbia Univ, Zuckerman Mind Brain Behav Inst, Dept Neurosci, New York, NY USA
[2] Allen Inst, Allen Inst Brain Sci, Seattle, WA USA
[3] NYU, Ctr Neural Sci, New York, NY 10003 USA
来源
CELL REPORTS | 2024年 / 43卷 / 04期
基金
美国国家卫生研究院;
关键词
PRIMARY MOTOR CORTEX; SPINAL-CORD; SKILLED MOVEMENTS; PYRAMIDAL TRACT; DIVERSITY; CIRCUITS; NUCLEUS; AREAS; REORGANIZATION; ORGANIZATION;
D O I
10.1016/j.celrep.2024.113993
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Corticospinal neurons (CSNs) synapse directly on spinal neurons, a diverse assortment of cells with unique structural and functional properties necessary for body movements. CSNs modulating forelimb behavior fractionate into caudal forelimb area (CFA) and rostral forelimb area (RFA) motor cortical populations. Despite their prominence, the full diversity of spinal neurons targeted by CFA and RFA CSNs is uncharted. Here, we use anatomical and RNA sequencing methods to show that CSNs synapse onto a remarkably selective group of spinal cell types, favoring inhibitory populations that regulate motoneuron activity and gate sensory feedback. CFA and RFA CSNs target similar spinal neuron types, with notable exceptions that suggest that these populations differ in how they influence behavior. Finally, axon collaterals of CFA and RFA CSNs target similar brain regions yet receive highly divergent inputs. These results detail the rules of CSN connectivity throughout the brain and spinal cord for two regions critical for forelimb behavior.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits
    Schubert, Dirk
    Koetter, Rolf
    Staiger, Jochen F.
    BRAIN STRUCTURE & FUNCTION, 2007, 212 (02): : 107 - 119
  • [32] Surmounting limited gene delivery into primary immune cell populations: Efficient cell type-specific adenoviral transduction by CAR
    Clausen, Bjoern E.
    Brand, Anna
    Karram, Khalad
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2015, 45 (06) : 1596 - 1599
  • [33] Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits
    Dirk Schubert
    Rolf Kötter
    Jochen F. Staiger
    Brain Structure and Function, 2007, 212 : 107 - 119
  • [34] Cell Type-Specific Effects of Adenosine on Cortical Neurons
    van Aerde, Karlijn I.
    Qi, Guanxiao
    Feldmeyer, Dirk
    CEREBRAL CORTEX, 2015, 25 (03) : 772 - 787
  • [35] Global analysis of cell type-specific gene expression
    Galbraith, DW
    COMPARATIVE AND FUNCTIONAL GENOMICS, 2003, 4 (02): : 208 - 215
  • [36] Cell type-specific chromatin topology and gene regulation
    Phanstiel, Douglas H.
    Wang, Gang Greg
    TRENDS IN GENETICS, 2022, 38 (05) : 413 - 415
  • [37] Cell type-specific plasticity at parallel fiber synapses onto Purkinje cells in the posterior caudal lobe of the mormyrid fish cerebellum
    Zhang, Yueping
    Magnus, Gerhard
    Han, Victor Z.
    JOURNAL OF NEUROPHYSIOLOGY, 2018, 120 (02) : 644 - 661
  • [38] Cell type-specific response to rupture of the nuclear envelope
    Kamikawa, Y.
    Saito, A.
    Wu, Z.
    Imaizumi, K.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 191 - 192
  • [39] Cell type-specific delivery by modular envelope design
    Daniel Strebinger
    Chris J. Frangieh
    Mirco J. Friedrich
    Guilhem Faure
    Rhiannon K. Macrae
    Feng Zhang
    Nature Communications, 14
  • [40] Heterokaryon Technique for Analysis of Cell Type-specific Localization
    Gammal, Roseann
    Baker, Krista
    Heilman, Destin
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2011, (49):