On the Power of Interactive Proofs for Learning

被引:0
|
作者
Gur, Tom [1 ]
Jahanara, Mohammad Mahdi [2 ]
Khodabandeh, Mohammad Mahdi [2 ]
Rajgopal, Ninad [1 ]
Salamatian, Bahar [3 ]
Shinkar, Igor [2 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Simon Fraser Univ, Burnaby, BC, Canada
[3] Qualcomm, Vancouver, BC, Canada
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
interactive proofs; agnostic learning; pac verification;
D O I
10.1145/3618260.3649784
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We continue the study of doubly-efficient proof systems for verifying agnostic PAC learning, for which we obtain the following results. We construct an interactive protocol for learning the t largest Fourier characters of a given function f : {0,1}(n) -> {0,1} up to an arbitrarily small error, wherein the verifier uses poly(t) random examples. This improves upon the Interactive Goldreich-Levin protocol of Goldwasser, Rothblum, Shafer, and Yehudayoff (ITCS 2021) whose sample complexity is poly(t,n). For agnostically learning the class AC(0)[2] under the uniform distribution, we build on the work of Carmosino, Impagliazzo, Kabanets, and Kolokolova (APPROX/RANDOM 2017) and design an interactive protocol, where given a function f : {0,1}(n) -> {0,1}, the verifier learns the closest hypothesis up to polylog(n) multiplicative factor, using quasi-polynomially many random examples. In contrast, this class has been notoriously resistant even for constructing realisable learners (without a prover) using random examples. For agnostically learning k-juntas under the uniform distribution, we obtain an interactive protocol, where the verifier uses O(2(k)) random examples to a given function f : {0,1}(n) -> {0,1}. Crucially, the sample complexity of the verifier is independent of n. We also show that if we do not insist on doubly-efficient proof systems, then the model becomes trivial. Specifically, we show a protocol for an arbitrary class C of Boolean functions in the distribution-free setting, where the verifier uses O(1) labeled examples to learn f.
引用
收藏
页码:1063 / 1070
页数:8
相关论文
共 50 条
  • [21] A Toolbox for Barriers on Interactive Oracle Proofs
    Arnon, Gal
    Bhangale, Amey
    Chiesa, Alessandro
    Yogev, Eylon
    [J]. THEORY OF CRYPTOGRAPHY, TCC 2022, PT I, 2022, 13747 : 447 - 466
  • [22] On communicating proofs in interactive mathematical documents
    Caprotti, O
    Oostdijk, M
    [J]. ARTIFICIAL INTELLIGENCE AND SYMBOLIC COMPUTATION, 2001, 1930 : 53 - 64
  • [23] Non-interactive proofs of proximity
    Tom Gur
    Ron D. Rothblum
    [J]. computational complexity, 2018, 27 : 99 - 207
  • [24] A blackboard architecture for guiding interactive proofs
    Benzmüller, C
    Sorge, V
    [J]. ARTIFICIAL INTELLIGENCE: METHODOLOGY SYSTEMS AND APPLICATIONS, 1998, 1480 : 102 - 114
  • [25] Delegating Computation: Interactive Proofs for Muggles
    Goldwasser, Shafi
    Kalai, Yael Tauman
    Rothblum, Guy N.
    [J]. STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 113 - 122
  • [26] Delegating Computation: Interactive Proofs for Muggles
    Goldwasser, Shafi
    Kalai, Yael Tauman
    Rothblum, Guy N.
    [J]. JOURNAL OF THE ACM, 2015, 62 (04)
  • [27] Distributed-Prover Interactive Proofs
    Das, Sourav
    Fernando, Rex
    Komargodski, Ilan
    Shi, Elaine
    Soni, Pratik
    [J]. THEORY OF CRYPTOGRAPHY, TCC 2023, PT I, 2023, 14369 : 91 - 120
  • [28] Additive proofs of knowledge - A new notion for non-interactive proofs
    Saxena, Amitabh
    [J]. SECRYPT 2007: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, 2007, : 239 - 244
  • [29] A PCP Theorem for Interactive Proofs and Applications
    Arnon, Gal
    Chiesa, Alessandro
    Yogev, Eylon
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT II, 2022, 13276 : 64 - 94
  • [30] ON THE COMPLEXITY OF SPACE BOUNDED INTERACTIVE PROOFS
    CONDON, A
    LIPTON, RJ
    [J]. 30TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1989, : 462 - 467