On the Power of Interactive Proofs for Learning

被引:0
|
作者
Gur, Tom [1 ]
Jahanara, Mohammad Mahdi [2 ]
Khodabandeh, Mohammad Mahdi [2 ]
Rajgopal, Ninad [1 ]
Salamatian, Bahar [3 ]
Shinkar, Igor [2 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Simon Fraser Univ, Burnaby, BC, Canada
[3] Qualcomm, Vancouver, BC, Canada
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
interactive proofs; agnostic learning; pac verification;
D O I
10.1145/3618260.3649784
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We continue the study of doubly-efficient proof systems for verifying agnostic PAC learning, for which we obtain the following results. We construct an interactive protocol for learning the t largest Fourier characters of a given function f : {0,1}(n) -> {0,1} up to an arbitrarily small error, wherein the verifier uses poly(t) random examples. This improves upon the Interactive Goldreich-Levin protocol of Goldwasser, Rothblum, Shafer, and Yehudayoff (ITCS 2021) whose sample complexity is poly(t,n). For agnostically learning the class AC(0)[2] under the uniform distribution, we build on the work of Carmosino, Impagliazzo, Kabanets, and Kolokolova (APPROX/RANDOM 2017) and design an interactive protocol, where given a function f : {0,1}(n) -> {0,1}, the verifier learns the closest hypothesis up to polylog(n) multiplicative factor, using quasi-polynomially many random examples. In contrast, this class has been notoriously resistant even for constructing realisable learners (without a prover) using random examples. For agnostically learning k-juntas under the uniform distribution, we obtain an interactive protocol, where the verifier uses O(2(k)) random examples to a given function f : {0,1}(n) -> {0,1}. Crucially, the sample complexity of the verifier is independent of n. We also show that if we do not insist on doubly-efficient proof systems, then the model becomes trivial. Specifically, we show a protocol for an arbitrary class C of Boolean functions in the distribution-free setting, where the verifier uses O(1) labeled examples to learn f.
引用
收藏
页码:1063 / 1070
页数:8
相关论文
共 50 条
  • [1] The Power of Distributed Verifiers in Interactive Proofs
    Naor, Moni
    Parter, Merav
    Yogev, Eylon
    [J]. PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 1096 - 1115
  • [2] The Power of Distributed Verifiers in Interactive Proofs
    Naor, Moni
    Parter, Merav
    Yogev, Eylon
    [J]. PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 1096 - 1115
  • [3] Interactive Coding for Interactive Proofs
    Bishop, Allison
    Dodis, Yevgeniy
    [J]. THEORY OF CRYPTOGRAPHY, TCC 2016-A, PT II, 2016, 9563 : 352 - 366
  • [4] BROADCAST INTERACTIVE PROOFS
    BURMESTER, M
    DESMEDT, Y
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 547 : 81 - 95
  • [5] A logic of interactive proofs
    Lehnherr, David
    Ognjanovic, Zoran
    Studer, Thomas
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2022, 32 (08) : 1645 - 1658
  • [6] Interactive Distributed Proofs
    Kol, Gillat
    Oshman, Rotem
    Saxena, Raghuvansh R.
    [J]. PODC'18: PROCEEDINGS OF THE 2018 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2018, : 255 - 264
  • [7] Interactive Oracle Proofs
    Ben-Sasson, Eli
    Chiesa, Alessandro
    Spooner, Nicholas
    [J]. THEORY OF CRYPTOGRAPHY, TCC 2016-B, PT II, 2016, 9986 : 31 - 60
  • [8] On interactive proofs with a laconic prover
    Goldreich, O
    Vadhan, S
    Wigderson, A
    [J]. AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 334 - 345
  • [9] Batch processing of interactive proofs
    Chida, Koji
    Yamamoto, Go
    [J]. TOPICS IN CRYPTOLOGY - CT-RSA 2007, PROCEEDINGS, 2007, 4377 : 196 - +
  • [10] Interactive Proofs for Rounding Arithmetic
    Chen, Shuo
    Cheon, Jung Hee
    Kim, Dongwoo
    Park, Daejun
    [J]. IEEE ACCESS, 2022, 10 : 122706 - 122725