Deep learning classification of ex vivo human colon tissues using spectroscopic optical coherence tomography

被引:0
|
作者
Kendall, Wesley Y. [1 ]
Tian, Qinyi [1 ]
Zhao, Shi [1 ]
Mirminachi, Seyedbabak [2 ]
O'Kane, Erin [1 ]
Joseph, Abel [2 ]
Dufault, Darin [2 ]
Miller, David A. [1 ]
Shi, Chanjuan [3 ]
Roper, Jatin [2 ,4 ,5 ]
Wax, Adam [1 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Sch Med, Dept Med, Div Gastroenterol, Durham, NC 27708 USA
[3] Duke Univ, Sch Med, Dept Pathol, Durham, NC USA
[4] Duke Univ, Sch Med, Dept Pharmacol & Canc Biol, Durham, NC USA
[5] Duke Univ, Sch Med, Dept Cell Biol, Durham, NC USA
关键词
colorectal cancer; light scattering; optical coherence tomography; spectroscopy; IN-VIVO; MODEL; DIAGNOSIS;
D O I
10.1002/jbio.202400082
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Screening for colorectal cancer (CRC) with colonoscopy has improved patient outcomes; however, it remains the third leading cause of cancer-related mortality, novel strategies to improve screening are needed. Here, we propose an optical biopsy technique based on spectroscopic optical coherence tomography (OCT). Depth resolved OCT images are analyzed as a function of wavelength to measure optical tissue properties and used as input to machine learning algorithms. Previously, we used this approach to analyze mouse colon polyps. Here, we extend the approach to examine human biopsied colonic epithelial tissue samples ex vivo. Optical properties are used as input to a novel deep learning architecture, producing accuracy of up to 97.9% in discriminating tissue type. SOCT parameters are used to create false colored en face OCT images and deep learning classifications are used to enable visual classification by tissue type. This study advances SOCT toward clinical utility for analysis of colonic epithelium.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Fast and Efficient Method for Optical Coherence Tomography Images Classification Using Deep Learning Approach
    Ara, Rouhollah Kian
    Matiolanski, Andrzej
    Dziech, Andrzej
    Baran, Remigiusz
    Domin, Pawel
    Wieczorkiewicz, Adam
    SENSORS, 2022, 22 (13)
  • [32] Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography
    South, Fredrick A.
    Chaney, Eric J.
    Marjanovic, Marina
    Adie, Steven G.
    Boppart, Stephen A.
    BIOMEDICAL OPTICS EXPRESS, 2014, 5 (10): : 3417 - 3426
  • [33] Cellular-level structure imaging in rat colon ex vivo and in vivo using micro-optical coherence tomography (μOCT)
    Yu, Xiaojun
    Luo, Yuemei
    Liu, Xinyu
    Chen, Si
    Wang, Xianghong
    Chen, Shi
    Liu, Linbo
    2016 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2016,
  • [34] In vivo optical biopsy of the human retina using optical coherence tomography
    Drexler, W
    Ghanta, RK
    Schuman, JS
    Ko, T
    Morgner, U
    Kärtner, FX
    Fujimoto, JG
    COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICAL SCIENCE AND CLINICA APPLICATIONS V, 2001, 4251 : 183 - 187
  • [35] Rapid ex vivo examination of Mohs specimens using optical coherence tomography
    Rashed, D.
    Shah, D.
    Freeman, A.
    Cook, R. J.
    Hopper, C.
    Perrett, C. M.
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2017, 19 : 243 - 248
  • [36] Ex vivo and in vivo topographic studies of bladder by optical coherence tomography
    Daniltchenko, D
    Sachs, MD
    Lankenau, E
    Koenig, F
    Burkhardt, M
    Huettmann, G
    Kristiansen, G
    Schnorr, D
    Al-Shukri, S
    Loening, SA
    Saratov Fall Meeting 2004: Optical Technologies in Biophysics and Medicine VI, 2005, 5771 : 209 - 214
  • [37] Imaging of Human Kidney and Colon Tissues with Full-Field Optical Coherence Tomography
    Zhou Yawen
    Gao Wanrong
    Xu Xinyu
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2018, 45 (06):
  • [38] BINARY TISSUE CLASSIFICATION STUDIES ON RESECTED HUMAN BREAST TISSUES USING OPTICAL COHERENCE TOMOGRAPHY IMAGES
    Bhattacharjee, M.
    Ashok, P. C.
    Rao, K. Divakar
    Majumder, S. K.
    Verma, Y.
    Gupta, P. K.
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2011, 4 (01) : 59 - 66
  • [39] Classification of Optical Coherence Tomography Images Using Deep Neural Networks
    Kotoku, J.
    Tsuji, T.
    Hirose, Y.
    Fujimori, K.
    Hirose, T.
    Oyama, A.
    Saikawa, Y.
    Mimura, T.
    Shiraishi, K.
    Kobayashi, T.
    Mizota, A.
    MEDICAL PHYSICS, 2020, 47 (06) : E391 - E391
  • [40] In vivo analysis of burns in a mouse model using spectroscopic optical coherence tomography
    Maher, Jason R.
    Jaedicke, Volker
    Medina, Manuel
    Levinson, Howard
    Selim, Maria Angelica
    Brown, William J.
    Wax, Adam
    OPTICS LETTERS, 2014, 39 (19) : 5594 - 5597