Performance prediction and operating parameters optimization for proton exchange membrane fuel cell based on data-driven surrogate model and particle swarm optimization

被引:0
|
作者
Zhang, Ning [1 ,2 ]
Wang, Hui [1 ,2 ]
Chen, Wenshang [1 ,2 ]
Zhou, Haoran [1 ,2 ]
Meng, Kai [1 ,2 ]
Chen, Ben [1 ,2 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[2] Hubei Collaborat Innovat Ctr Automot Components Te, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
PEMFC; Data-driven; Particle swarm optimization; Operating condition; Maximum power density; ARTIFICIAL NEURAL-NETWORK; PEMFC PERFORMANCE; CATHODE; DESIGN; LAYER;
D O I
10.1016/j.ijhydene.2024.05.051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The operating parameters of proton exchange membrane fuel cell (PEMFC) are critical to its performance and working life. This study presents a data -driven modeling approach combining a surrogate model with the particle swarm optimization algorithm to optimize operating parameters for PEMFC and obtain the maximum power density. The results show that the operating parameters significantly influence power density under high current densities, with inlet temperature having the most significant effect. Lower inlet temperature, relative humidity in the cathode and anode, along with higher operating pressure yield improved output performance. The Genetic Algorithm-Backpropagation Neural Network based surrogate model exhibits excellent predictive performance with correlation coefficients of 0.99896 and 0.99815 for the training and test sets, respectively. Optimized conditions achieve a 3.3% increase in power density compared to initial settings, with only a 0.15% error in simulation calculations. This data -driven approach provides valuable insights for maximizing PEMFC efficiency and performance.
引用
收藏
页码:493 / 503
页数:11
相关论文
共 50 条
  • [41] Multi-objective optimization of proton exchange membrane fuel cell geometry and operating parameters based on three new performance evaluation indexes
    Liu, Shengnan
    Tan, Jiaqi
    Hu, Haoqin
    Lu, Chenlei
    Xuan, Dongji
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [42] Model parameters estimation of the proton exchange membrane fuel cell by a Modified Golden Jackal Optimization
    Rezaie, Mehrdad
    Azar, Keyvan Karamnejadi
    Sani, Armin Kardan
    Akbari, Ehsan
    Ghadimi, Noradin
    Razmjooy, Navid
    Ghadamyari, Mojtaba
    [J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [43] PEM fuel cell model parameters optimization using modified particle swarm optimization algorithm
    Isa, Zainuddin Mat
    Rahim, Nasrudin Abdul
    [J]. 2013 IEEE CONFERENCE ON CLEAN ENERGY AND TECHNOLOGY (CEAT), 2013, : 442 - 445
  • [44] Multi-physics-resolved digital twin of proton exchange membrane fuel cells with a data-driven surrogate model
    Wang, Bowen
    Zhang, Guobin
    Wang, Huizhi
    Xuan, Jin
    Jiao, Kui
    [J]. ENERGY AND AI, 2020, 1
  • [45] A survey on parameters estimation of the proton exchange membrane fuel cells based on the swarm-inspired optimization algorithms
    Razmjooy, Navid
    [J]. FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [46] The Degradation Prediction of Proton Exchange Membrane Fuel Cell Performance Based on a Transformer Model
    Meng, Xuan
    Mei, Jian
    Tang, Xingwang
    Jiang, Jinhai
    Sun, Chuanyu
    Song, Kai
    [J]. ENERGIES, 2024, 17 (12)
  • [47] Data-Driven Robust Multimodal Multiobjective Particle Swarm Optimization
    Han, Honggui
    Liu, Yucheng
    Hou, Ying
    Qiao, Junfei
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (05): : 3231 - 3243
  • [48] Data-driven reconstruction of interpretable model for air supply system of proton exchange membrane fuel cell
    Deng, Zhihua
    Chen, Qihong
    Zhang, Liyan
    Zhou, Keliang
    Zong, Yi
    Fu, Zhichao
    Liu, Hao
    [J]. Applied Energy, 2021, 299
  • [49] Surrogate model for proton exchange membrane fuel cell (PEMFC)
    Tirnovan, R.
    Giurgea, S.
    Miraoui, A.
    Cirrincione, A.
    [J]. JOURNAL OF POWER SOURCES, 2008, 175 (02) : 773 - 778
  • [50] Data-driven reconstruction of interpretable model for air supply system of proton exchange membrane fuel cell
    Deng, Zhihua
    Chen, Qihong
    Zhang, Liyan
    Zhou, Keliang
    Zong, Yi
    Fu, Zhichao
    Liu, Hao
    [J]. APPLIED ENERGY, 2021, 299