Multiple hydraulic fracture propagation simulation in deep shale gas reservoir considering thermal effects

被引:0
|
作者
Lin, Ran [1 ]
Peng, Sirui [1 ]
Zhao, Jinzhou [1 ]
Jiang, Hao [2 ]
Ren, Lan [1 ]
Zhou, Bo [1 ]
Wu, Jianfa [3 ]
Song, Yi [3 ]
Shen, Cheng [3 ]
机构
[1] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploitat, Chengdu 610500, Peoples R China
[2] China Natl Petr Corp Chuanqing Drilling Engn Co Lt, Chengdu 610051, Peoples R China
[3] PetroChina Southwest Oil & Gas Field Co, Chengdu 610056, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep shale; Fracture propagation; Thermal effects; Displacement discontinuity method; Modeling and simulation; BRITTLE; INTERFERENCE; GROWTH; SINGLE; PLANE;
D O I
10.1016/j.engfracmech.2024.110147
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Deep and ultra -deep shale gas will gradually become the focus of unconventional oil and gas resources in the petroleum industry. In the development of shallow shale reservoirs, the multicluster hydraulic fracturing of horizontal wells is the commonly applied technique to create a network of fractures and achieve reservoir stimulation. However, for deep shale reservoirs, the behavior of multiple hydraulic fracture propagation is affected by stress interference between fractures. On the other hand, it is also influenced by the temperature disturbances caused by the injection of low -temperature fracturing fluids into high -temperature formations and the resulting thermal effects. Currently, most research on multiple hydraulic fracture propagation in shale only considers the interaction between fluids and solids while neglecting thermal effects. Therefore, based on the displacement discontinuity method, finite volume method, and finite difference method, this study established a numerical model for the non -planar propagation of multi -cluster hydraulic fractures in deep shale, considering the thermal effects. And the model was validated through numerical solutions of the temperature field and double -fracture propagation. Moreover, the number of fracture clusters, pumping rate, and formation temperature were selected as influencing factors, and the differences in multiple hydraulic fracture propagation with and without considering thermal effects were analyzed. The results show that as the formation temperature increases, the thermal effects become more significant, leading to greater differences in the morphology of multi -cluster fractures. Moreover, the thermal effects are more significant when the formation temperature exceeds 90 degrees C. Additionally, appropriately reducing the number of fracture clusters or increasing the pumping rate can to some extent mitigate stress interference between fractures and promote uniform fracture propagation. The findings of this study contribute to understanding the influence of thermal effects on multiple hydraulic fracture propagation and provide theoretical basis for the efficient development of deep shale gas.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] The numerical simulation of thermal recovery considering rock deformation in shale gas reservoir
    Yuan, Jianwei
    Jiang, Ruizhong
    Cui, Yongzheng
    Xu, Jianchun
    Wang, Qiong
    Zhang, Wei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 138 : 719 - 728
  • [12] Peridynamic simulation on hydraulic fracture propagation in shale formation
    Li, Chengxuan
    Wang, J. G.
    ENGINEERING FRACTURE MECHANICS, 2021, 258
  • [13] Fracture Initiation and Propagation in a Deep Shale Gas Reservoir Subject to an Alternating-Fluid-Injection Hydraulic-Fracturing Treatment
    Hou, Bing
    Chang, Zhi
    Fu, Weineng
    Muhadasi, Yeerfulati
    Chen, Mian
    SPE JOURNAL, 2019, 24 (04): : 1839 - 1855
  • [14] Numerical simulation of hydraulic fracturing in shale gas reservoir
    Liu, Jianjun (liujj0906@163.com), 1600, E-Journal of Geotechnical Engineering (19):
  • [15] Numerical simulation of hydraulic fracturing in shale gas reservoir
    Liu, Jianjun, 1600, E-Journal of Geotechnical Engineering (19):
  • [16] The propagation mechanism of elastoplastic hydraulic fracture in deep reservoir
    Jinbo Li
    Siwei Meng
    Suling Wang
    He Liu
    Kangxing Dong
    Qiuyu Lu
    International Journal of Coal Science & Technology, 2025, 12 (1)
  • [17] Study on the induced effect of bedding weakness in deep shale gas reservoir on hydraulic fractures propagation
    Duan, Guifu
    Mou, Jianye
    Liu, Zhaoyi
    Han, Lingling
    Cui, Hanzhuo
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [18] Numerical simulation of hydraulic fracture propagation in a shallow reservoir
    Xiao, Hui
    Tao, Hong-Sheng
    Qiao, Hong-Jun
    Mu, Jing-Fu
    Electronic Journal of Geotechnical Engineering, 2015, 20 (26): : 13037 - 13050
  • [19] A Numerical Study of Hydraulic Fracture Propagation Geometry in a Layered Shale Reservoir
    Zhang, Lei
    Jin, Yu
    Dong, Zhuo
    Yuan, Ruifu
    GEOFLUIDS, 2022, 2022
  • [20] Numerical Study on Hydraulic Fracture Propagation in a Layered Continental Shale Reservoir
    Han, Lili
    Li, Yanyan
    Hu, Wei
    Wei, Siyu
    Wang, Wei
    Zhang, Fengyan
    Wang, Ye
    ENERGIES, 2022, 15 (23)