Training Process of Memristor-Based Spiking Neural Networks For Non-linearity

被引:0
|
作者
Chen, Tsu-Hsiang [1 ]
Chang, Chih-Chun [1 ]
Huang, Chih-Tsun [1 ]
Liou, Jing-Jia [2 ]
机构
[1] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu, Taiwan
[2] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu, Taiwan
关键词
Spiking Neural Network; Memristor Array; Training; Variability;
D O I
10.1109/VLSITSA60681.2024.10546383
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The implementation of a spiking neural network (SNN) with memristor arrays has the potential to improve the area and power efficiency of edge-device inference. However, due to non-linearity, we cannot maintain the inference accuracy on a memristor array with the trained weights based on a regular SNN. In this paper, we proposed a training process to consider the non-linear circuit effects. With the proposed method, the experimental results showed that the accuracy of the trained SNN was improved from 62.99% to 92.81%.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [31] Programmable Non-Linearity for STAR Cellular Neural Networks
    Sargeni, Fausto
    Bonaiuto, Vincenzo
    2009 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1 AND 2, 2009, : 547 - 550
  • [32] Equilibrium Propagation for Memristor-Based Recurrent Neural Networks
    Zoppo, Gianluca
    Marrone, Francesco
    Corinto, Fernando
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [33] Memristor-based Neuromorphic Implementations for Artificial Neural Networks
    Zhao, Chun
    Zhou, Guang You
    Zhao, Ce Zhou
    Yang, Li
    Man, Ka Lok
    Lim, Eng Gee
    2018 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2018, : 174 - 175
  • [34] Multisynchronization of a class of delayed memristor-based neural networks
    Lin, Ya-Qi
    Ge, Ming-Feng
    Ding, Teng-Fei
    Zhu, Ziqi
    He, Juanjuan
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 5509 - 5513
  • [35] Equilibrium Propagation and (Memristor-based) Oscillatory Neural Networks
    Zoppo, Gianluca
    Marrone, Francesco
    Bonnin, Michele
    Corinto, Fernando
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 639 - 643
  • [36] Hardware implementation of memristor-based artificial neural networks
    Aguirre, Fernando
    Sebastian, Abu
    Le Gallo, Manuel
    Song, Wenhao
    Wang, Tong
    Yang, J. Joshua
    Lu, Wei
    Chang, Meng-Fan
    Ielmini, Daniele
    Yang, Yuchao
    Mehonic, Adnan
    Kenyon, Anthony
    Villena, Marco A.
    Roldan, Juan B.
    Wu, Yuting
    Hsu, Hung-Hsi
    Raghavan, Nagarajan
    Sune, Jordi
    Miranda, Enrique
    Eltawil, Ahmed
    Setti, Gianluca
    Smagulova, Kamilya
    Salama, Khaled N.
    Krestinskaya, Olga
    Yan, Xiaobing
    Ang, Kah-Wee
    Jain, Samarth
    Li, Sifan
    Alharbi, Osamah
    Pazos, Sebastian
    Lanza, Mario
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [37] Hardware implementation of memristor-based artificial neural networks
    Fernando Aguirre
    Abu Sebastian
    Manuel Le Gallo
    Wenhao Song
    Tong Wang
    J. Joshua Yang
    Wei Lu
    Meng-Fan Chang
    Daniele Ielmini
    Yuchao Yang
    Adnan Mehonic
    Anthony Kenyon
    Marco A. Villena
    Juan B. Roldán
    Yuting Wu
    Hung-Hsi Hsu
    Nagarajan Raghavan
    Jordi Suñé
    Enrique Miranda
    Ahmed Eltawil
    Gianluca Setti
    Kamilya Smagulova
    Khaled N. Salama
    Olga Krestinskaya
    Xiaobing Yan
    Kah-Wee Ang
    Samarth Jain
    Sifan Li
    Osamah Alharbi
    Sebastian Pazos
    Mario Lanza
    Nature Communications, 15
  • [38] Memristor-based chaotic neural networks for associative memory
    Shukai Duan
    Yi Zhang
    Xiaofang Hu
    Lidan Wang
    Chuandong Li
    Neural Computing and Applications, 2014, 25 : 1437 - 1445
  • [39] Memristor-Based Circuit Design for Multilayer Neural Networks
    Zhang, Yang
    Wang, Xiaoping
    Friedman, Eby G.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (02) : 677 - 686
  • [40] Memristor-based chaotic neural networks for associative memory
    Duan, Shukai
    Zhang, Yi
    Hu, Xiaofang
    Wang, Lidan
    Li, Chuandong
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (06): : 1437 - 1445