Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer

被引:0
|
作者
Montoya, Oscar Danilo [1 ]
De Angelo, Cristian H. [2 ]
Bossio, Guillermo [2 ]
机构
[1] Univ Distrital Francisco Jose de Caldas, Fac Ingn, Grp Compatibil & Interferencia Electromagnet, Bogota 110231, Colombia
[2] Univ Nacl Rio Cuarto UNRC, Grp Elect Aplicada GEA, Inst Invest Tecnol Energet & Mat Avanzados IITEMA, CONICET, Rio Cuarto, Cordoba, Argentina
关键词
Parametric estimation in induction motors; Generalized normal distribution optimizer; Mean square error minimization; Nonlinear programming via metaheuristic optimization; Torque calculation; GENERATION;
D O I
10.1016/j.rineng.2024.102446
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This research addresses the parametric estimation problem in three-phase induction motors by applying a recently developed metaheuristic method known as the generalized normal distribution optimizer (GNDO). A nonlinear programming model based on the steady-state circuit of the induction motor, which uses its Thevenin equivalent, is employed to model the estimation problem. Estimation is carried out by minimizing the mean square error between torque data (obtained from measurements or provided by the manufacturer) and the values calculated with the model. The main advantage of using the GNDO is its effective balance between the exploration and exploitation of the solution space via Gaussian distributions. Numerical tests in two threephase induction machines confirm the effectiveness of this approach in comparison with the classical genetic algorithm, the particle swarm optimizer, and the sine cosine algorithm. The GNDO approach reports objective function values of about 9.7834 x 10(-14) and 2.6500 x 10(-14) , while the sine cosine algorithm reaches solutions of about 4.6327 x 10(-10) and 1.2400 x 10(-6) in both tested motors. All numerical simulations were performed in the MATLAB software, version 2022b.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors
    Godoy, Wagner Fontes
    Morinigo-Sotelo, Daniel
    Duque-Perez, Oscar
    da Silva, Ivan Nunes
    Goedtel, Alessandro
    Cunha Palacios, Rodrigo Henrique
    [J]. ENERGIES, 2020, 13 (13)
  • [42] Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks
    Vega-Forero, Julian Alejandro
    Ramos-Castellanos, Jairo Stiven
    Montoya, Oscar Danilo
    [J]. ENERGIES, 2023, 16 (03)
  • [43] Parameter Estimation for Single-Phase Induction Motors using Test Measurement Data
    Phuc Huynh
    Zhu, Hao
    Aliprantis, Dionysios
    [J]. 2016 North American Power Symposium (NAPS), 2016,
  • [44] Three-phase Harmonic State Estimation for Distribution Systems by Using the SVD Technique
    Breda, Jader F. D.
    Vieira, Jose C. M.
    Oleskovicz, Mario
    [J]. 2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [45] Position control of three-phase induction motors using sliding mode control strategy and its implementation
    Karrari, M
    Samavati, A
    Raie, A
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2003, 27 (B4): : 669 - 678
  • [46] Stator-flux-oriented control for three-phase induction motors using sliding mode control
    Vinh-Quan Nguyen
    Quang-Tho Tran
    Hoai-Nghia Duong
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2020, 16 (02) : 171 - 184
  • [47] Three-phase induction motors faults recognition and classification using neural networks and response surface models
    Gonçalves Júnior A.M.
    Rocha E Silva V.V.
    Rabelo Baccarini L.M.
    Figueiredo Reis M.L.
    [J]. Journal of Control, Automation and Electrical Systems, 2014, 25 (03) : 330 - 338
  • [48] Stator fault analysis of three-phase induction motors using information measures and artificial neural networks
    Bazan, Gustavo Henrique
    Scalassara, Paulo Rogerio
    Endo, Wagner
    Goedtel, Alessandro
    Godoy, Wagner Fontes
    Cunha Palacios, Rodrigo Henrique
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2017, 143 : 347 - 356
  • [49] Differential Evolution Applied to DTC Drive for Three-Phase Induction Motors Using an Adaptive State Observer
    Costa B.L.G.
    Angélico B.A.
    Goedtel A.
    Castoldi M.F.
    Graciola C.L.
    [J]. J. Control Autom. Electr. Syst., 4 (403-420): : 403 - 420
  • [50] Multiarea Parallel Data-Driven Three-Phase Distribution System State Estimation Using Synchrophasor Measurements
    Zargar, Behzad
    Angioni, Andrea
    Ponci, Ferdinanda
    Monti, Antonello
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (09) : 6186 - 6202