Hybrid algorithm of Bayesian optimization and evolutionary algorithm in crystal structure prediction

被引:4
|
作者
Yamashita, Tomoki [1 ]
Kino, Hiori [2 ]
Tsuda, Koji [2 ,3 ,4 ]
Miyake, Takashi [5 ]
Oguchi, Tamio [6 ]
机构
[1] Nagaoka Univ TechnologyTop Runner Incubat Ctr Acad, Fus, Nagaoka, Japan
[2] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst, Tsukuba, Japan
[3] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Japan
[4] RIKEN, Ctr Adv Intelligence Project, Tokyo, Japan
[5] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat, Tsukuba, Japan
[6] Osaka Univ, Ctr Spintron Res Network, Toyonaka, Japan
基金
日本科学技术振兴机构;
关键词
Crystal structure prediction; Bayesian optimization; evolutionary algorithm; first-principles calculations; machine learning; materials informatics; TOTAL-ENERGY CALCULATIONS; WAVE; PSEUDOPOTENTIALS; CHEMISTRY;
D O I
10.1080/27660400.2022.2055987
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a highly efficient searching algorithm in crystal structure prediction. The searching algorithm is a hybrid of the evolutionary algorithm and Bayesian optimization. The evolutionary algorithm is widely used in crystal structure prediction, and the Bayesian optimization is one of the selection-type algorithms we have developed. We have performed simulations of crystal structure prediction to compare the success rates of the random search, evolutionary algorithm, Bayesian optimization, and hybrid algorithm for up to ternary systems such as Si, Y2Co17, Al2O3, and CuGaS2, using the CrySPY code. These results demonstrate that the evolutionary algorithm can generate structures more efficiently than random structure generation, and the Bayesian optimization can efficiently select potential candidates from a large number of structures. Moreover, the hybrid algorithm, which has the advantages of both, is proved to be the most efficient searching algorithm among them.
引用
下载
收藏
页码:67 / 74
页数:8
相关论文
共 50 条
  • [21] A Hybrid Evolutionary Algorithm to Solve Function Optimization
    Zhao, Dan
    Li, Zhenhua
    Guo, Weiya
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, 2008, : 245 - 248
  • [22] A hybrid adaptive evolutionary algorithm for constrained optimization
    Li, Xiang
    Liang, Xi-Ming
    2007 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, VOL II, PROCEEDINGS, 2007, : 338 - 341
  • [23] Hybrid evolutionary algorithm and application to structural optimization
    Z. Fawaz
    Y.G. Xu
    K. Behdinan
    Structural and Multidisciplinary Optimization, 2005, 30 : 219 - 226
  • [24] Hybrid evolutionary algorithm for solving optimization problems
    Li, Kangshun
    Li, Wei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (11) : 1591 - 1602
  • [25] Hybrid Evolutionary Algorithm for Molecular Geometric Optimization
    Garcia Blanquel, Ericka
    Garcia Blanquel, Claudia
    Luna-Garcia, Rene
    COMPUTACION Y SISTEMAS, 2019, 23 (02): : 569 - 582
  • [26] A Hybrid Evolutionary Computation Algorithm for Global Optimization
    Bashir, Hassan A.
    Neville, Richard S.
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [27] Crystal Structure Prediction of Magnetic Transition-Metal Oxides by Using Evolutionary Algorithm and Hybrid DFT Methods
    Kuklin, Mikhail S.
    Karttunen, Antti J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (43): : 24949 - 24957
  • [28] COPEX: co-evolutionary crystal structure prediction algorithm for complex systems
    Liu, Xiangyang
    Niu, Haiyang
    Oganov, Artem R.
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [29] Evolutionary Algorithm-based Crystal Structure Prediction for Gold(I) Fluoride
    Eklund, Kim
    Kuklin, Mikhail S.
    Kraus, Florian
    Karttunen, Antti J.
    CHEMPHYSCHEM, 2020, 21 (08) : 802 - 808
  • [30] Evolutionary Algorithm-Based Crystal Structure Prediction of CuxZnyOz Ternary Oxides
    Kuklin, Mikhail S.
    Karttunen, Antti J.
    MOLECULES, 2023, 28 (16):