A Sylvester-Gallai-Type Theorem for Complex-Representable Matroids

被引:0
|
作者
Geelen, Jim [1 ]
Kroeker, Matthew E. [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Complex geometry; Matroids; Sylvester-Gallai Theorem; Kelly's Theorem;
D O I
10.1007/s00454-024-00661-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Sylvester-Gallai Theorem states that every rank-3 real-representable matroid has a two-point line. We prove that, for each k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}, every complex-representable matroid with rank at least 4k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4<^>{k-1}$$\end{document} has a rank-k flat with exactly k points. For k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document}, this is a well-known result due to Kelly, which we use in our proof. A similar result was proved earlier by Barak, Dvir, Wigderson, and Yehudayoff and later refined by Dvir, Saraf, and Wigderson, but we get slightly better bounds with a more elementary proof.
引用
收藏
页码:258 / 263
页数:6
相关论文
共 50 条
  • [21] Sylvester-Gallai theorems for complex numbers and quaternions
    Elkies, N
    Pretorius, LM
    Swanepoel, KJ
    DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (03) : 361 - 373
  • [22] A Sylvester–Gallai Result for Concurrent Lines in the Complex Plane
    Alex Cohen
    Discrete & Computational Geometry, 2022, 68 : 172 - 187
  • [23] GALLAI-TYPE THEOREM
    BASTON, VJ
    BOSTOCK, FA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 10 (MAY): : 177 - 178
  • [24] Sylvester-Gallai Type Theorems for Quadratic Polynomials
    Shpilka, Amir
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 1203 - 1214
  • [25] SYLVESTER-GALLAI TYPE THEOREMS FOR APPROXIMATE COLLINEARITY
    Ai, Albert
    Dvir, Zeev
    Saraf, Shubhangi
    Wigderson, Avi
    FORUM OF MATHEMATICS SIGMA, 2014, 2
  • [26] A Sylvester-Gallai Result for Concurrent Lines in the Complex Plane
    Cohen, Alex
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (01) : 172 - 187
  • [27] An ErdAs-Gallai-Type Theorem for Keyrings
    Sidorenko, Alexander
    GRAPHS AND COMBINATORICS, 2018, 34 (04) : 633 - 638
  • [28] An Erdos-Gallai type theorem for uniform hypergraphs
    Davoodi, Akbar
    Gyori, Ervin
    Methuku, Abhishek
    Tompkins, Casey
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 69 : 159 - 162
  • [29] An Erdős–Gallai-Type Theorem for Keyrings
    Alexander Sidorenko
    Graphs and Combinatorics, 2018, 34 : 633 - 638
  • [30] A Gallai's Theorem type result for the edge stability of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 118 - 121