A Sylvester-Gallai-Type Theorem for Complex-Representable Matroids

被引:0
|
作者
Geelen, Jim [1 ]
Kroeker, Matthew E. [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Complex geometry; Matroids; Sylvester-Gallai Theorem; Kelly's Theorem;
D O I
10.1007/s00454-024-00661-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Sylvester-Gallai Theorem states that every rank-3 real-representable matroid has a two-point line. We prove that, for each k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}, every complex-representable matroid with rank at least 4k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4<^>{k-1}$$\end{document} has a rank-k flat with exactly k points. For k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document}, this is a well-known result due to Kelly, which we use in our proof. A similar result was proved earlier by Barak, Dvir, Wigderson, and Yehudayoff and later refined by Dvir, Saraf, and Wigderson, but we get slightly better bounds with a more elementary proof.
引用
收藏
页码:258 / 263
页数:6
相关论文
共 50 条
  • [1] A generalized Sylvester-Gallai-type theorem for quadratic polynomials
    Peleg, Shir
    Shpilka, Amir
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [2] Excluding a Line from Complex-Representable Matroids
    Geelen, Jim
    Nelson, Peter
    Walsh, Zach
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 303 (1523)
  • [3] A Sylvester–Gallai Type Theorem for Abelian Groups
    F. K. Nilov
    A. A. Polyanskii
    Mathematical Notes, 2021, 110 : 110 - 117
  • [4] A Sylvester-Gallai Type Theorem for Abelian Groups
    Nilov, F. K.
    Polyanskii, A. A.
    MATHEMATICAL NOTES, 2021, 110 (1-2) : 110 - 117
  • [5] ON A GENERALIZATION OF THE GALLAI-SYLVESTER THEOREM
    KUPITZ, YS
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (01) : 87 - 103
  • [6] Sylvester–Gallai Theorem and Metric Betweenness
    Vasek Chvátal
    Discrete & Computational Geometry, 2004, 31 : 175 - 195
  • [7] A constructive version of the Sylvester–Gallai theorem
    M. Mandelkern
    Acta Mathematica Hungarica, 2016, 150 : 121 - 130
  • [8] An Erdos-Gallai Theorem for Matroids
    McGuinness, Sean
    ANNALS OF COMBINATORICS, 2012, 16 (01) : 107 - 119
  • [9] On the Sylvester-Gallai theorem for conics
    Czaplinski, A.
    Dumnicki, M.
    Farnik, L.
    Gwozdziewicz, J.
    Lampa-Baczynska, M.
    Malara, Grzegorz
    Szemberg, T.
    Szpond, J.
    Tutaj-Gasinska, H.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 136 : 191 - 203
  • [10] Sylvester-Gallai theorem and metric betweenness
    Chvátal, V
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (02) : 175 - 195