MAEF-Net: MLP Attention for Feature Enhancement in U-Net based Medical Image Segmentation Networks

被引:1
|
作者
Zhang, Yunchu [1 ,2 ]
Dong, Jianfei [3 ]
机构
[1] Univ Sci & Technol China, Sch Biomed Engn Suzhou, Div Life Sci & Med, Suzhou 215163, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215163, Peoples R China
[3] Soochow Univ, Sch Future Sci & Engn, Suzhou 215222, Peoples R China
关键词
MLP; attention; U-Net; image segmentation; LIVER-TUMOR;
D O I
10.1109/JBHI.2023.3332908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical image segmentation plays an important role in diagnosis. Since the introduction of U-Net, numerous advancements have been implemented to enhance its performance and expand its applicability. The advent of Transformers in computer vision has led to the integration of self-attention mechanisms into U-Net, resulting in significant breakthroughs. However, the inherent complexity of Transformers renders these networks computationally demanding and parameter-heavy. Recent studies have demonstrated that multilayer perceptrons (MLPs), with their simpler architecture, can achieve comparable performance to Transformers in natural language processing and computer vision tasks. Building upon these findings, we have enhanced the previously proposed "Enhanced-Feature-Four-Fold-Net" (EF3-Net) by introducing an MLP-attention block to learn long-range dependencies and expand the receptive field. This enhanced network is termed "MLP-Attention Enhanced-Feature-four-fold-Net", abbreviated as "MAEF-Net". To further enhance accuracy while reducing computational complexity, the proposed network incorporates additional efficient design elements. MAEF-Net was evaluated against several general and specialized medical image segmentation networks using four challenging medical image datasets. The results demonstrate that the proposed network exhibits high computational efficiency and comparable or superior performance to EF3-Net and several state-of-the-art methods, particularly in segmenting blurry objects.
引用
收藏
页码:846 / 857
页数:12
相关论文
共 50 条
  • [21] Boundary Aware U-Net for Medical Image Segmentation
    Alahmadi, Mohammad D.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 9929 - 9940
  • [22] Medical Image Segmentation Review: The Success of U-Net
    Azad, Reza
    Aghdam, Ehsan Khodapanah
    Rauland, Amelie
    Jia, Yiwei
    Avval, Atlas Haddadi
    Bozorgpour, Afshin
    Karimijafarbigloo, Sanaz
    Cohen, Joseph Paul
    Adeli, Ehsan
    Merhof, Dorit
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (12) : 10076 - 10095
  • [23] Diffusion Transformer U-Net for Medical Image Segmentation
    Chowdary, G. Jignesh
    Yin, Zhaozheng
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 622 - 631
  • [24] Recurrent residual U-Net for medical image segmentation
    Alom, Md Zahangir
    Yakopcic, Chris
    Hasan, Mahmudul
    Taha, Tarek M.
    Asari, Vijayan K.
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
  • [25] Local Adaptive U-net for Medical Image Segmentation
    Liu, Ning
    Liu, Liangliang
    Wang, Jianxin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 670 - 674
  • [26] Slim U-Net: Efficient Anatomical Feature Preserving U-net Architecture for Ultrasound Image Segmentation
    Raina, Deepak
    Verma, Kashish
    Chandrashekhara, Sheragaru Hanumanthappa
    Saha, Subir Kumar
    2022 9TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2022, 2022, : 41 - 48
  • [27] Boundary Aware U-Net for Medical Image Segmentation
    Mohammad D. Alahmadi
    Arabian Journal for Science and Engineering, 2023, 48 : 9929 - 9940
  • [28] Medical image segmentation method based on multi-scale feature and U-net network
    Wang, Jingquan
    INTERNET TECHNOLOGY LETTERS, 2023, 7 (05)
  • [29] Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation
    Patel, Krushi
    Bur, Andres M.
    Wang, Guanghui
    2021 18TH CONFERENCE ON ROBOTS AND VISION (CRV 2021), 2021, : 181 - 188
  • [30] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241