MEDIC: A Multimodal Empathy Dataset in Counseling

被引:0
|
作者
Zhu, Zhouan [1 ]
Li, Chenguang [1 ]
Pan, Jicai [1 ]
Li, Xin [1 ]
Xiao, Yufei [1 ]
Chang, Yanan [1 ]
Zheng, Feiyi [1 ]
Wang, Shangfei [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Datasets; Multimodality; Psychological Counseling; Empathy;
D O I
10.1145/3581783.3612346
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psychological counseling sessions. The dataset consists of 771 video clips. We also propose three labels (i.e., expression of experience, emotional reaction, and cognitive reaction) to describe the degree of empathy between counselors and their clients. Expression of experience describes whether the client has expressed experiences that can trigger empathy, and emotional and cognitive reactions indicate the counselor's empathic reactions. As an elementary assessment of the usability of the constructed multimodal empathy dataset, an interrater reliability analysis of annotators' subjective evaluations for video clips is conducted using the intraclass correlation coefficient and Fleiss' Kappa. Results prove that our data annotation is reliable. Furthermore, we conduct empathy prediction using three typical methods, including the tensor fusion network, the sentimental words aware fusion network, and a simple concatenation model. The experimental results show that empathy can be well predicted on our dataset. Our dataset is available for research purposes.
引用
收藏
页码:6054 / 6062
页数:9
相关论文
共 50 条
  • [41] Pohang canal dataset: A multimodal maritime dataset for autonomous navigation in restricted waters
    Chung, Dongha
    Kim, Jonghwi
    Lee, Changyu
    Kim, Jinwhan
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2023, 42 (12): : 1104 - 1114
  • [42] Baracca: a Multimodal Dataset for Anthropometric Measurements in Automotive
    Pini, Stefano
    D'Eusanio, Andrea
    Borghi, Guido
    Vezzani, Roberto
    Cucchiara, Rita
    [J]. IEEE/IAPR INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2020), 2020,
  • [43] MSCTD: A Multimodal Sentiment Chat Translation Dataset
    Liang, Yunlong
    Meng, Fandong
    Xu, Jinan
    Chen, Yufeng
    Zhou, Jie
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 2601 - 2613
  • [44] MIntRec: A New Dataset for Multimodal Intent Recognition
    Zhang, Hanlei
    Xu, Hua
    Wang, Xin
    Zhou, Qianrui
    Zhao, Shaojie
    Teng, Jiayan
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1688 - 1697
  • [45] MemoSen: A Multimodal Dataset for Sentiment Analysis of Memes
    Hossain, Eftekhar
    Sharif, Omar
    Hoque, Mohammed Moshiul
    [J]. LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 1542 - 1554
  • [46] Multimodal Entity Linking: A New Dataset and A Baseline
    Gan, Jingru
    Luo, Jinchang
    Wang, Haiwei
    Wang, Shuhui
    He, Wei
    Huang, Qingming
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 993 - 1001
  • [47] INTRODUCING A MULTIMODAL DATASET FOR THE RESEARCH OF ARCHITECTURAL ELEMENTS
    Bruschke, J.
    Kroeber, C.
    Maiwald, F.
    Utescher, R.
    Pattee, A.
    [J]. 29TH CIPA SYMPOSIUM DOCUMENTING, UNDERSTANDING, PRESERVING CULTURAL HERITAGE. HUMANITIES AND DIGITAL TECHNOLOGIES FOR SHAPING THE FUTURE, VOL. 48-M-2, 2023, : 325 - 331
  • [48] A multimodal tactile dataset for dynamic texture classification
    Lima, Bruno Monteiro Rocha
    Danyamraju, Venkata Naga Sai Siddhartha
    de Oliveira, Thiago Eustaquio Alves
    da Fonseca, Vinicius Prado
    [J]. DATA IN BRIEF, 2023, 50
  • [49] VISEM: A Multimodal Video Dataset of Human Spermatozoa
    Haugen, Trine B.
    Hicks, Steven A.
    Andersen, Jorunn M.
    Witczak, Oliwia
    Hammer, Hugo L.
    Borgli, Rune
    Halvorsen, Pai
    Riegler, Michael
    [J]. PROCEEDINGS OF THE 10TH ACM MULTIMEDIA SYSTEMS CONFERENCE (ACM MMSYS'19), 2019, : 261 - 266
  • [50] MEmoR: A Dataset for Multimodal Emotion Reasoning in Videos
    Shen, Guangyao
    Wang, Xin
    Duan, Xuguang
    Li, Hongzhi
    Zhu, Wenwu
    [J]. MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 493 - 502