Factorization in the monoid of integrally closed ideals

被引:0
|
作者
Lewis, Emmy [1 ]
机构
[1] Cornell Univ, Dept Math, 310 Malott Hall, Ithaca, NY 14853 USA
关键词
Ideal factorization; integral closure; Newton polyhedron; polytope group;
D O I
10.1080/00927872.2024.2374437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Noetherian ring A, the collection of integrally closed ideals in A which contain a nonzerodivisor forms a cancellative monoid under the operation I*J=IJ<overline> , the integral closure of the product. The monoid is torsion-free and atomic. Restricting to monomial ideals in a polynomial ring, there is a surjective homomorphism from the Integral Polytope Group onto the Grothendieck group of integrally closed monomial ideals under translation invariance of their Newton Polyhedra. The Integral Polytope Group, the Grothendieck group of polytopes with integer vertices under Minkowski addition and translation invariance, has an explicit basis, allowing for explicit factoring in the monoid.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] POLYNOMIAL AND INTEGRALLY CLOSED RING
    HAOUAT, Y
    GRAZZINI, F
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (19): : 1171 - 1173
  • [42] Integrally Closed Residuated Lattices
    Gil-Ferez, Jose
    Lauridsen, Frederik Mollerstrom
    Metcalfe, George
    [J]. STUDIA LOGICA, 2020, 108 (05) : 1063 - 1086
  • [43] A NOTE ON INTEGRALLY CLOSED SUBRINGS
    GILMER, R
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (02): : 403 - &
  • [44] Integrally Closed Residuated Lattices
    José Gil-Férez
    Frederik Möllerström Lauridsen
    George Metcalfe
    [J]. Studia Logica, 2020, 108 : 1063 - 1086
  • [45] INTEGRALLY CLOSED FACTOR DOMAINS
    BARUCCI, V
    DOBBS, DE
    MULAY, SB
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) : 353 - 366
  • [46] When is R[θ] integrally closed?
    Khanduja, Sudesh K.
    Jhorar, Bablesh
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (05)
  • [47] ON WEAK ANNIHILATOR IDEALS OF SKEW MONOID RINGS
    Ouyang, Lunqun
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4259 - 4272
  • [48] The maximal subsemigroups of the ideals in a monoid of partial injections
    Sareeto, Apatsara
    Koppitz, Jorg
    [J]. SEMIGROUP FORUM, 2024, 109 (01) : 194 - 204
  • [49] FACTORIZATION INTO PRIME IDEALS
    GILMER, R
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1972, 47 (01) : 70 - &
  • [50] FACTORIZATION OF COMPLETE IDEALS
    CUTKOSKY, SD
    [J]. JOURNAL OF ALGEBRA, 1988, 115 (01) : 144 - 149