Synthesis of N-heterocyclic carbene (NHC)-Au/Ag/Cu benzotriazolyl complexes and their catalytic activity in propargylamide cycloisomerization and carbonyl hydrosilylation reactions
Carbene-metal-amide (CMA) complexes of gold, silver, and copper have been studied extensively for their photochemical/photocatalytic properties and as potential (pre-)catalysts in organic synthesis. Herein, the design, synthesis, and characterization of five bench-stable Au-, Ag-, and Cu-NHC complexes bearing the benzotriazolyl anion as an amide donor, are reported. All complexes are synthesized in a facile and straightforward manner, using mild conditions. The catalytic activity of the Ag and Cu complexes was studied in propargylamide cycloisomerization and carbonyl hydrosilylation reactions. Both CMA-catalyzed transformations proceed under mild conditions and are highly efficient for a range of propargylamides and carbonyl compounds, respectively, affording the desired corresponding products in good to excellent yields. Facile access to a new family of Au-, Ag- and Cu-based Carbene-Metal-Amide (CMA) complexes is reported. These stable complexes bear the benzotriazolyl anion as the amido fragment, and are evaluated as (pre)catalysts in propargylamide cycloisomerizations and carbonyl hydrosilylations.