ECO-3D: Equivariant Contrastive Learning for Pre-training on Perturbed 3D Point Cloud

被引:0
|
作者
Wang, Ruibin [1 ]
Ying, Xianghua [1 ]
Xing, Bowei [1 ]
Yang, Jinfa [1 ]
机构
[1] Peking Univ, Sch Intelligence Sci & Technol, Key Lab Machine Percept, MOE, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we investigate contrastive learning on perturbed point clouds and find that the contrasting process may widen the domain gap caused by random perturbations, making the pre-trained network fail to generalize on testing data. To this end, we propose the Equivariant COntrastive frame-work which closes the domain gap before contrasting, further introduces the equivariance property, and enables pretraining networks under more perturbation types to obtain meaningful features. Specifically, to close the domain gap, a pre-trained VAE is adopted to convert perturbed point clouds into less perturbed point embedding of similar domains and separated perturbation embedding. The contrastive pairs can then be generated by mixing the point embedding with different perturbation embedding. Moreover, to pursue the equivariance property, a Vector Quantizer is adopted during VAE training, discretizing the perturbation embedding into one-hot tokens which indicate the perturbation labels. By correctly predicting the perturbation labels from the perturbed point cloud, the property of equivariance can be encouraged in the learned features. Experiments on synthesized and real-world perturbed datasets show that ECO-3D outperforms most existing pre-training strategies under various downstream tasks, achieving SOTA performance for lots of perturbations.
引用
收藏
页码:2626 / 2634
页数:9
相关论文
共 50 条
  • [41] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUD
    Malinverni, E. S.
    Pierdicca, R.
    Paolanti, M.
    Martini, M.
    Morbidoni, C.
    Matrone, F.
    Lingua, A.
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 735 - 742
  • [42] Hierarchical Edge Aware Learning for 3D Point Cloud
    Li, Lei
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT I, 2024, 14495 : 81 - 92
  • [43] Learning 3D Shape Latent for Point Cloud Completion
    Chen, Zhikai
    Long, Fuchen
    Qiu, Zhaofan
    Yao, Ting
    Zhou, Wengang
    Luo, Jiebo
    Mei, Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8717 - 8729
  • [44] Point Cloud Annotation Methods for 3D Deep Learning
    O'Mahony, Niall
    Campbell, Sean
    Carvalho, Anderson
    Krpalkova, Lenka
    Riordan, Daniel
    Walsh, Joseph
    2019 13TH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST), 2019,
  • [45] 3D Point Cloud Geometry Compression on Deep Learning
    Huang, Tianxin
    Liu, Yong
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 890 - 898
  • [46] Learning Without Forgetting for 3D Point Cloud Objects
    Chowdhury, Townim
    Jalisha, Mahira
    Cheraghian, Ali
    Rahman, Shafin
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 484 - 497
  • [47] A learning based 3D reconstruction method for point cloud
    Guo Qi
    Li Jinhui
    2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 271 - 276
  • [48] Joint representation learning for text and 3D point cloud
    Huang, Rui
    Pan, Xuran
    Zheng, Henry
    Jiang, Haojun
    Xie, Zhifeng
    Wu, Cheng
    Song, Shiji
    Huang, Gao
    PATTERN RECOGNITION, 2024, 147
  • [49] Geometric Invariant Representation Learning for 3D Point Cloud
    Li, Zongmin
    Zhang, Yupeng
    Bai, Yun
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 1480 - 1485
  • [50] Enhanced Point Cloud Interpretation via Style Fusion and Contrastive Learning in Advanced 3D Data Analysis
    Zhou, Ruimin
    Own, Chung-Ming
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT I, 2023, 14254 : 344 - 355