Adaptive propagation deep graph neural networks

被引:0
|
作者
Chen, Wei [1 ]
Yan, Wenxu [1 ]
Wang, Wenyuan [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214000, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural network; Adaptive propagation combinations; Subjective and objective information; Aggregation weights; Computational costs;
D O I
10.1016/j.patcog.2024.110607
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks (GNNs) with adaptive propagation combinations represent a specialized deep learning paradigm, engineered to capture complex nodal interconnections within graph data. The primary challenge of this model lies in distilling and representing features extracted over varying nodal distances. This paper delves into an array of adaptive propagation strategies, with a focus on the influence of nodal distances and information aggregation on model efficacy. Our investigation identifies a critical performance drop in scenarios featuring overly brief propagation paths or an insufficient number of layers. Addressing this, we propose an innovative adaptive propagation technique in deep graph neural networks, named AP-DGNN, aimed at reconstructing high -order graph convolutional neural networks (GCNs). The AP-DGNN model assigns unique aggregation combination weights to each node and category, culminating in a final model representation through a process of weighted aggregation. Notably, these weights are capable of assimilating both subjective and objective information characteristics within the network. To substantiate our model's effectiveness and scalability, we employed often -used benchmark datasets for experimental validation. A notable aspect of our AP-DGNN model is its minimal training parameter requirement and reduced computational demand. Furthermore, we demonstrate the model's enhanced performance, which remains consistent across various hyperparameter configurations. This aspect was rigorously tested under diverse hyperparameter settings. Our findings contribute significantly to the evolution of graph neural networks, potentially revolutionizing their application across multiple domains. The research presented herein not only advances the understanding of GNNs but also paves the way for their robust application in varied scenarios. Codes are available at https://github.com/CW112/AP_DGNN.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] GRAPH-ADAPTIVE ACTIVATION FUNCTIONS FOR GRAPH NEURAL NETWORKS
    Iancu, Bianca
    Ruiz, Luana
    Ribeiro, Alejandro
    Isufi, Elvin
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [22] Adaptive dependency learning graph neural networks
    Sriramulu, Abishek
    Fourrier, Nicolas
    Bergmeir, Christoph
    INFORMATION SCIENCES, 2023, 625 : 700 - 714
  • [23] Adaptive Transfer Learning on Graph Neural Networks
    Han, Xueting
    Huang, Zhenhuan
    An, Bang
    Bai, Jing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 565 - 574
  • [24] Adaptive filters in Graph Convolutional Neural Networks
    Apicella, Andrea
    Isgro, Francesco
    Pollastro, Andrea
    Prevete, Roberto
    PATTERN RECOGNITION, 2023, 144
  • [25] Learning Adaptive Neighborhoods for Graph Neural Networks
    Saha, Avishkar
    Mendez, Oscar
    Russell, Chris
    Bowden, Richard
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 22484 - 22493
  • [26] Graph neural networks for deep portfolio optimization
    Ekmekcioglu, Omer
    Pinar, Mustafa C.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (28): : 20663 - 20674
  • [27] Graph neural networks for deep portfolio optimization
    Ömer Ekmekcioğlu
    Mustafa Ç. Pınar
    Neural Computing and Applications, 2023, 35 : 20663 - 20674
  • [28] Deep Neural Networks for Learning Graph Representations
    Cao, Shaosheng
    Lu, Wei
    Xu, Qiongkai
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1145 - 1152
  • [29] GRAPHNET: GRAPH CLUSTERING WITH DEEP NEURAL NETWORKS
    Zhang, Xianchao
    Mu, Jie
    Liu, Han
    Zhang, Xiaotong
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3800 - 3804
  • [30] Scalable Graph Neural Networks via Bidirectional Propagation
    Chen, Ming
    Wei, Zhewei
    Ding, Bolin
    Li, Yaliang
    Yuan, Ye
    Du, Xiaoyong
    Wen, Ji-Rong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33