Reference Electrode Types for Zero-Gap CO2 Electrolyzers: Benefits and Limitations

被引:0
|
作者
Bohn, Luca [1 ,2 ]
Kieninger, Jochen [3 ]
Rupitsch, Stefan J. [3 ]
Klose, Carolin [1 ]
Vierrath, Severin [1 ,2 ]
Disch, Joey [1 ,2 ]
机构
[1] Univ Freiburg, IMTEK Dept Microsyst Engn, Electrochem Energy Syst, Georges Koehler Allee 103, D-79110 Freiburg, Germany
[2] Univ Freiburg, FIT Freiburg Ctr Interact Mat & Bioinspired Techno, Georges Koehler Allee 105, D-79110 Freiburg, Germany
[3] Univ Freiburg, IMTEK Dept Microsyst Engn, Lab Elect Instrumentat & Embedded Syst, Georges Koehler Allee 106, D-79110 Freiburg, Germany
关键词
CO2; electrolysis; electrochemical CO2 reduction; electrode potential; reference electrode integration; zero-gap cell;
D O I
10.1002/advs.202402095
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Integrated reference electrodes allow to deconvolute voltage contributions of anode and cathode and contribute to a better understanding of CO2 electrolyzers. However, in zero-gap cell configurations, this integration can be challenging and obtaining error-free data with such a setup is a non-trivial task. This study compares five different methods to integrate a reference electrode into an alkaline zero-gap CO2 electrolysis cell. Sources of error and measures to circumvent them are investigated and finite-element simulation is used to gain a better understanding of observed effects. Placing a reference electrode into the inactive area of the cell is found to be a reliable method, as long as the placement of electrodes is sufficiently controlled. Sandwiching a wire quasi-reference electrode between two membranes is especially useful for electrochemical impedance spectroscopy; however, it can affect the overall cell performance. Contacting the catalyst layer from the backside with a salt-bridge is promising for localized measurements if sufficient reproducibility can be ensured.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Ni,Fe,Co-LDH Coated Porous Transport Layers for Zero-Gap Alkaline Water Electrolyzers
    Zaffora, Andrea
    Megna, Bartolomeo
    Seminara, Barbara
    Di Franco, Francesco
    Santamaria, Monica
    NANOMATERIALS, 2024, 14 (05)
  • [22] Enriching Surface-Accessible CO2 in the Zero-Gap Anion-Exchange-Membrane-Based CO2 Electrolyzer
    Xu, Qiucheng
    Xu, Aoni
    Garg, Sahil
    Moss, Asger B.
    Chorkendorff, Ib
    Bligaard, Thomas
    Seger, Brian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (03)
  • [23] Engineering Aspects for the Design of a Bicarbonate Zero-Gap Flow Electrolyzer for the Conversion of CO2 to Formate
    Gutierrez-Sanchez, Oriol
    De Mot, Bert
    Bulut, Metin
    Pant, Deepak
    Breugelmans, Tom
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (27) : 30760 - 30771
  • [24] Interaction of Cathode Interface Microenvironment and Anode Electrolyte in Zero-Gap Electrolyzer for CO2 Conversion
    Yuan, Lei
    Wan, Qiqi
    Jiang, Wenxing
    Li, Guangfu
    Zhuang, Xiaodong
    Zhang, Junliang
    Ke, Changchun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (32): : 11949 - 11956
  • [25] A Zero-Gap Gas Phase Photoelectrolyzer for CO2 Reduction with Porous Carbon Supported Photocathodes
    Zhao, Yujie
    Merino-Garcia, Ivan
    Albo, Jonathan
    Kaiser, Andreas
    CHEMSUSCHEM, 2024, 17 (16)
  • [26] Gas Diffusion Electrode with Microporous Layers of Hydrophobicity Gradient Distribution for CO2 Electrolysis in a Zero-Gap Electrolyzer Operated with Pure Water
    Wan, Qiqi
    Yuan, Lei
    Jiang, Wenxing
    Liu, Yingying
    Zhang, Longhai
    Zhuang, Xiaodong
    Zhang, Junliang
    Ke, Changchun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (48) : 17046 - 17052
  • [27] Gas-phase electrochemical CO2 reduction on silver-copper BTC MOF in a zero-gap membrane electrode assembly
    Nambi, Ashwin
    Chatzitakis, Athanasios
    Olsbye, Unni
    Hjelm, Johan
    Zhao, Yujie
    Kaiser, Andreas
    ELECTROCHIMICA ACTA, 2024, 506
  • [28] Direct Water Injection in Catholyte-Free Zero-Gap Carbon Dioxide Electrolyzers
    De Mot, Bert
    Ramdin, Mahinder
    Hereijgers, Jonas
    Vlugt, Thijs J. H.
    Breugelmans, Tom
    CHEMELECTROCHEM, 2020, 7 (18): : 3839 - 3843
  • [29] New strategies for economically feasible CO2 electroreduction using a porous membrane in zero-gap configuration
    Lee, Woong Hee
    Kim, Kyeongsu
    Lim, Chulwan
    Ko, Young-Jin
    Hwang, Yun Jeong
    Min, Byoung Koun
    Lee, Ung
    Oh, Hyung-Suk
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (29) : 16169 - 16177
  • [30] Zero-Gap Electrochemical CO2 Reduction Cells: Challenges and Operational Strateges for Prevention of Salt Precipitation
    Sassenburg, Mark
    Kelly, Maria
    Subramanian, Siddhartha
    Smith, Wilson A.
    Burdyny, Thomas
    ACS ENERGY LETTERS, 2023, 8 (01) : 321 - 331