On the design of convolutional neural networks for automatic detection of Alzheimer's disease

被引:0
|
作者
Liu, Sheng [1 ]
Yadav, Chhavi [2 ]
Fernandez-Granda, Carlos [1 ,2 ]
Razavian, Narges [3 ,4 ,5 ]
机构
[1] NYU, Ctr Data Sci, New York, NY 10003 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[3] NYU, Langone Med Ctr, Dept Populat Hlth, New York, NY 10003 USA
[4] NYU, Langone Med Ctr, Dept Radiol, New York, NY 10003 USA
[5] NYU, Langone Med Ctr, Ctr Data Sci, New York, NY 10003 USA
基金
美国国家卫生研究院;
关键词
MRI; HIPPOCAMPAL; BIOMARKERS; DEMENTIA; ATROPHY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early detection is a crucial goal in the study of Alzheimer's Disease (AD). In this work, we describe several techniques to boost the performance of 3D convolutional neural networks trained to detect AD using structural brain MRI scans. Specifically, we provide evidence that (1) instance normalization outperforms batch normalization, (2) early spatial downsampling negatively affects performance, (3) widening the model brings consistent gains while increasing the depth does not, and (4) incorporating age information yields moderate improvement. Together, these insights yield an increment of approximately 14% in test accuracy over existing models when distinguishing between patients with AD, mild cognitive impairment, and controls in the ADNI dataset. Similar performance is achieved on an independent dataset. We make our code and models publicly available at https://github.com/NYUMedML/CNN_design_for_AD.
引用
收藏
页码:184 / 201
页数:18
相关论文
共 50 条
  • [41] Classification Results of Artificial Neural Networks for Alzheimer's Disease Detection
    Savio, Alexandre
    Garcia-Sebastian, Maite
    Hernandez, Carmen
    Grana, Manuel
    Villanua, Jorge
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, PROCEEDINGS, 2009, 5788 : 641 - +
  • [42] DemNet: A Convolutional Neural Network for the Detection of Alzheimer's Disease and Mild Cognitive Impairment
    Billones, Ciprian D., Jr.
    Demetria, Olivia Jan Louville D.
    Hostallero, David Earl D.
    Naval, Prospero C., Jr.
    [J]. PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 3724 - 3727
  • [43] Periodontal Disease Detection Using Convolutional Neural Networks
    Joo, Jaehan
    Jeong, Sinjin
    Jin, Heetae
    Lee, Uhyeon
    Yoon, Ji Young
    Kim, Suk Chan
    [J]. 2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 360 - 362
  • [44] Hierarchical Convolutional Neural Networks for Leaf Disease Detection
    Chakroun, Ezzeddine
    Ghazouani, Haythem
    Barhoumi, Walid
    Zagrouba, Ezzeddine
    Jeon, Gwanggil
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ, 2023,
  • [45] Melanoma Disease Detection Using Convolutional Neural Networks
    Sanketh, Ravva Sai
    Bala, M. Madhu
    Reddy, Panati Viswa Narendra
    Kumar, G. V. S. Phani
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1031 - 1037
  • [46] Combining Convolutional and Recurrent Neural Networks for Alzheimer's Disease Diagnosis Using PET Images
    Cheng, Danni
    Liu, Manhua
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 117 - 121
  • [47] Alzheimer's disease diagnosis from diffusion tensor images using convolutional neural networks
    Marzban, Eman N.
    Eldeib, Ayman M.
    Yassine, Inas A.
    Kadah, Yasser M.
    [J]. PLOS ONE, 2020, 15 (03):
  • [48] Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis
    Li, Aojie
    Li, Fan
    Elahifasaee, Farzaneh
    Liu, Manhua
    Zhang, Lichi
    [J]. BRAIN IMAGING AND BEHAVIOR, 2021, 15 (05) : 2330 - 2339
  • [49] Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer’s disease diagnosis
    Aojie Li
    Fan Li
    Farzaneh Elahifasaee
    Manhua Liu
    Lichi Zhang
    [J]. Brain Imaging and Behavior, 2021, 15 : 2330 - 2339
  • [50] Automatic detection surface defects based on convolutional neural networks and deflectometry
    Buitrago, Felipe
    Ossa, Luis Fernando Castillo
    Arango-Lopez, Jeferson
    [J]. EXPERT SYSTEMS, 2023,